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Properties

• Utility: Strictly increasing, strictly quasiconcave, and continuous.

• Indirect Utility: Continuous, homogeneous of degree (HOD) zero in (p, y), increasing in y, decreasing
in p, quasiconvex in (p, y), and satisfies Roy’s identity.

• Expenditure Function: Continuous, zero when u = 0, strictly increasing in p, HOD 1 in p, concave in
p, and satisfies Shephard’s Lemma.

• Production Function: Strictly increasing, strictly quasiconcave, and (typically) exhibits constant re-
turns to scale (CTS).

• Cost Function: Zero when y = 0, continuous, increasing in w, HOD 1 in w, concave in w, and satisfies
Shephard’s Lemma.

• Conditional Input Demands: Denoted x(w, y); HOD 1 in w and with a negative semidefinite substi-
tution matrix.

• Profit Function: Increasing in output prices p, decreasing in input prices w, HOD 1 in (p, w), convex in
(p, w), and (if f is strictly concave) satisfies Hotelling’s Lemma.

• Output Supply & Input Demand: Homogeneous of degree zero:

y(tp, tw) = y(p, w), x(tp, tw) = x(p, w),

with own price effects
∂y(p, w)

∂p
≥ 0,

∂x(p, w)

∂p
≤ 0.

• Excess Demand Functions: Continuous, HOD zero in p, and satisfy Walras’ law.

Profit Function Convexity

Let
p′′ = tp+ (1− t)p′, t ∈ [0, 1].

We want to show that
π(p′′) ≤ t π(p) + (1− t)π(p′).

Assume that y is the profit-maximizing production plan at price p, and y′ is the corresponding plan at p′.
Let y′′ be the production plan for p′′. Then

π(p′′) =
[
tp+ (1− t)p′

]
· y′′

= t p · y′′ + (1− t) p′ · y′′.
∗These notes are from my time as a student in the University of Houston PhD Economics program.
†Typos may exist in these notes. If any are found, please contact me.
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Since y and y′ are optimal at p and p′ respectively, we have

t p · y ≤ t p · y′′ and (1− t) p′ · y′ ≤ (1− t) p′ · y′′.

Adding these inequalities gives the desired convexity:

π(p′′) ≤ t π(p) + (1− t)π(p′).

□

Expenditure Function Concavity

Let e(p, u) be the expenditure function. For

p′′ = tp+ (1− t)p′,

we want to show
e(p′′, u) ≥ t e(p, u) + (1− t)e(p′, u).

Since the expenditure function is defined by

e(p, u) = p · xH(p, u),

where xH(p, u) is the Hicksian demand, note that

e(p′′, u) = p′′ · xH(p′′, u) = t p · xH(p′′, u) + (1− t) p′ · xH(p′′, u).

Because xH(p, u) minimizes expenditure, it follows that

t p · xH(p′′, u) ≥ t e(p, u) and (1− t) p′ · xH(p′′, u) ≥ (1− t) e(p′, u).

Thus,
e(p′′, u) ≥ t e(p, u) + (1− t)e(p′, u).

□

Why is the Cost Function Concave?

Since the cost function is equivalent to the expenditure function, the same concavity proof applies. In other
words, for

p′′ = tp+ (1− t)p′

and any utility level ū,
e(p′′, ū) ≥ t e(p, ū) + (1− t)e(p′, ū),

which implies the cost function is concave in p. □

Profit Function Properties

1. Nondecreasing in Output Prices:
∂π

∂p
≥ 0.

2. Nonincreasing in Input Prices:
∂π

∂w
≤ 0.

3. Homogeneity of Degree 1:
π(t w, t p) = t π(w, p).

4. Convexity: As shown above.

5. Hotelling’s Lemma: If the production function f(·) is strictly concave, then Hotelling’s Lemma holds.
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Marshallian Demands and Elasticities

Marshallian demand elasticities are given by:

Own price elasticity:
∂xi

∂pi
· pi
xi

(usually negative),

Cross price elasticity:
∂xi

∂pj
· pj
xi

(positive for substitutes, negative for complements),

Income elasticity:
∂xi

∂y
· y

xi
.

Additional Assumptions/Properties

• Utility: Continuous, strictly increasing, and strictly quasiconcave.

• Indirect Utility: Continuous, HOD zero in (p, y), increasing in y, decreasing in p, quasiconvex in (p, y),
satisfies Roy’s identity.

• Expenditure Function: Continuous, zero when u = 0, strictly increasing in p, HOD 1 in p, and concave
in p.

• Production Function: Continuous, strictly increasing, and strictly quasiconcave.

• Cost Function: Zero when y = 0, continuous, increasing in w, HOD 1 in w, concave in w, satisfies
Shephard’s Lemma.

• Conditional Input Demands: x(w, y) is HOD 1 in w with a negative semidefinite substitution matrix.

• Profit Function: Increasing in p, decreasing in w, HOD 1 in (p, w), convex in (p, w), and (if f is strictly
concave) satisfies Hotelling’s Lemma.

• Output Supply & Input Demand:

1. Homogeneous of degree zero:

y(tp, tw) = y(p, w), x(tp, tw) = x(p, w).

2. Own price effects:
∂y(p, w)

∂p
≥ 0,

∂x(p, w)

∂w
≤ 0.

• Excess Demand Functions: Continuous, HOD zero in p, and satisfy Walras’ law.

First Welfare Theorem Proofs

FWT with Production

Claim: Every Pareto Efficient Allocation (PEA) is a Walrasian Equilibrium Allocation (WEA).

Proof. Suppose (x, y) is a WEA at p∗ but not Pareto efficient. Then there exists a feasible allocation (x̂, ŷ)
such that

u(x̂) ≥ u(x)

for all consumers. This implies
p∗ · x̂ ≥ p∗ · x.

Summing over consumers,

p∗ ·
∑

ŷi ≥ p∗ ·
∑

yi,

which contradicts the assumption that firms maximize profit.
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FWT without Production

Suppose an allocation x is not Pareto efficient. Then there exists x̂ such that

u(x̂) ≥ u(x) and p · x̂ ≥ p · x.

Since all agents face binding constraints, this leads to a contradiction in consumer optimality.

Second Welfare Theorem without Production

If x is Pareto efficient and feasible (i.e.
∑

xi =
∑

ei), then by monotonicity and feasibility, there exists an
allocation that is Pareto efficient. (The full details are omitted here for brevity.)

Existence of Utility

Let e be the vector of ones and suppose u(x) is defined on X. Define

A = {t ≥ 0 | te ∈ X},

B = {t ≥ 0 | te /∈ X}.

If there exists t∗ ∈ A ∩ B, then we define u(x) = t∗. Continuity of preferences implies that both A and B
are closed. Monotonicity shows that if t ∈ A, then all t′ > t are in A. Hence, we may write A = [t∗,∞) and
B = [0, t∗]. Completeness guarantees A ∪B = [0,∞), and uniqueness follows by monotonicity. □

Slutsky Equation

The Slutsky equation can be written as:

∂xi(p, y)

∂pj
=

∂xH
i (p, u∗)

∂pj
− xi(p, y) ·

∂xi(p, y)

∂y
.

Since the Hicksian demand satisfies
xH
i (p, u) = xH

i

(
p, e(p, u)

)
,

differentiating with respect to pj yields

∂xH
i

∂pj
=

xi(p, e(p, u))

pj
+

∂xi(p, e(p, u))

∂y
· ∂e(p, u)

∂pj
.

Noting that
∂e(p, u)

∂pj
= xH

j (p, u),

we obtain the stated form.

Hotelling’s Lemma

Consider the profit maximization problem

max π(q, x1, x2, . . . ; p, w1, w2, . . . ) = pq − w1x1 − w2x2 subject to f(x1, x2) ≥ q.

Let the constraint be written as
G(x1, x2, q) = f(x1, x2)− q = 0.

Denote the profit function by V (p, w1, w2). Then Hotelling’s Lemma gives

∂V

∂p
= q (output supply) and

∂V

∂wi
= −xi(p, w) (input demand).
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Shephard’s Lemma for Consumers

For the consumer problem, consider the expenditure minimization:

min
x

e(x, p) = p1x1 + p2x2 subject to u(x1, x2) = ū.

Define
G(x1, x2, u) = u(x1, x2)− ū.

Then, by Shephard’s Lemma,
∂e(x, p)

∂pi
= xH

i (p, u).

Shephard’s Lemma for Producers

For the producer problem, consider the cost minimization:

min
x

c(y, w) = w1x1 + w2x2 subject to f(x1, x2) ≥ q.

Define
G(x1, x2, q) = f(x1, x2)− q = 0.

Then, by Shephard’s Lemma,
∂c(y, w)

∂wi
= xi(q, w).

Welfare Theorems

FWT ⇒ WEA is PE

(“Pareto Efficiency implies Walrasian Equilibrium”)

If x is Pareto efficient (PE) then it is also a Walrasian equilibrium allocation (WEA) because feasibility
(
∑

xi =
∑

ei) combined with optimality prevents any deviation.

FWT with Production

Suppose (x, y) is a WEA at p∗ but not Pareto efficient. Then∑
xi =

∑
yi +

∑
ei.

Since it is not PE, there exists a feasible allocation (x̂, ŷ) such that

ui(x̂i) ≥ ui(xi).

This implies
p∗ · x̂i ≥ p∗ · xi,

and consequently

p∗ ·
∑

ŷi > p∗ ·
∑

yi,

which contradicts profit maximization.
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SWT with Production

Consider an economy with modified endowments e = (ui, x̂i, ei, Ŷ i) where each consumer’s endowment is
augmented by the production set Ŷ i. Since firms earn nonnegative profits, each consumer can afford his/her
endowment vector. Thus,

ui(xi) ≥ ui(x̂i).

For some aggregate production vector ŷ, the allocation (x, ŷ) is feasible in the original economy:∑
xi =

∑
x̂i +

∑
yj

=
∑

x̂i +
∑

(yj − ŷj)

=
∑

x̂i −
∑

ŷj +
∑

ŷj

=
∑

ei +
∑

ŷj .

Strict quasiconcavity forces ŷi = ŷ∗ (otherwise averaging would improve utility), which in turn implies zero
profit.

Consumer Choice Axioms

1. Completeness: For any two bundles x1 and x2, either x1 ⪰ x2, x2 ⪰ x1, or x1 ∼ x2.

2. Transitivity: If x1 ⪰ x2 and x2 ⪰ x3, then x1 ⪰ x3.

3. Continuity: Preferences are continuous; small changes do not lead to abrupt reversals.

4. Strict Monotonicity: If x1 ≥ x2 (with at least one strict inequality), then x1 ≻ x2.

5. Strict Convexity: For any distinct bundles x1 and x0 with x1 ⪰ x0 and for all t ∈ (0, 1),

t x1 + (1− t)x0 ≻ x0.

Utility Function and Existence

A function u : Rn
+ → R represents preferences if

u(x′) ≥ u(x) ⇐⇒ x′ ⪰ x.

Under the assumptions of completeness, transitivity, and continuity, such a utility representation exists.

Existence Proof

Let e be the vector of ones and define

A = {t ≥ 0 | te ∈ X},

B = {t ≥ 0 | te /∈ X}.

If there exists t∗ ∈ A ∩ B, then we define u(x) = t∗. Continuity of preferences implies both A and B are
closed. Monotonicity ensures that if t ∈ A, then every t′ > t is also in A. Hence, one can write A = [t∗,∞)
and B = [0, t∗]. Completeness guarantees A∪B = [0,∞), and by monotonicity the intersection is a singleton.
□
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Indirect Utility

The indirect utility function is continuous, HOD zero in (p, y), strictly increasing in y, decreasing in p,
quasiconvex in (p, y), and satisfies Roy’s identity.

Proof of Homogeneity of Degree Zero

For any scalar t > 0,
v(tp, ty) = v(p, y),

since scaling both prices and income does not change the feasible set. □
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