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1 Introduction

These notes cover key concepts covered in a Ph.D. Economics Contract Theory Course, which
was my Ph.D. Microeconomics II Course. The topics including adverse selection, screening,
signaling, hidden action, moral hazard, as well as a variety of related literature that discusses
problems of matching, stability, search problems, learning, and communication.

2 Averse Selection & Screening

2.1 Optimal Employment Contracts

— No uncertainty or hidden information.

— Employer-employee (principal-agent) relationship.

— Constraints on how the contract is set up.

2.2 Two Goods: Labor and Transfer/Money

— Employer: Utility function U(l,t) with an initial endowment (I1,%;) = (0,1) (i.e., no labor
but 1 unit of money).

~ Employee: Utility function u(l, ) with an initial endowment (l5,75) = (1,0) (i.e., all labor
but no money).

Here, U(l,t) and u(l,t) are the representation utilities. Assuming that both functions are
increasing and strictly concave guarantees the presence of gains from trade.

2.3 Joint Surplus Maximization
The joint surplus maximization problem can be expressed as:
max U(ll, tl) + u(lg, tg)

subject to the constraints:
h4+lb=L+1=1,

t1+t2:£1+£2:1.

A parameter can be introduced here to reflect bargaining power between the parties.

2.4 Lagrangian Formulation

We write the Lagrangian as:
L= U(ll,tl) + u(lg,tg) — )\(1 — 1l — 12) — )\t(l — 1t — t2>.

The first-order conditions (FOCs) are:

%: Uf(li,t1)) = A=0 = U=\,
oly

oL
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785 Ul t) = =0 = Us= M\
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Thus, joint surplus maximization is achieved when the marginal rates of substitution (MRS)

between money and leisure are equal:
U

Ut N ut’
confirming the presence of gains from trade.
2.5 Adding Uncertainty

Introduce uncertainty by considering two states: a low state (©r) and a high state (©). In the
high state, suppose the individual endowments change to:

(ha tim) = (2,1),  (low,for) = (2,1).
The goal now is to maximize the expected joint employment, which leads to the condition:

UH ug

[T
ensuring that the marginal rate of substitution is consistent across states.

2.6 Coinsurance

This section considers the optimal coinsurance contract offered by the employer. The Employer’s
Problem is formulated as:

max PrU(lir,tip) + PuU(lim, tin), (1)

Lijitig
sit. lip,lor, <y, lor, tin,tor <tin,tar, (2)
Pru(lar,tar) + P u(lop, tom) > 4, (3)
where u = PLU(EQL,tQL) +PH U(KQH,tQH). (4

The first-order conditions include:

FOC(¢1r): PrU(lip,tan) + Al =0, (5)
FOC(EQL) : Py Ug(fgL,tQL) + )\EL =0. (6)

Together with similar conditions for ¢1; and o}, these imply:

Uiz, tir) _ Ui(lar, tar)
w(lor,tor)  w(lor,tor)’

In essence, the contract is designed to minimize risk exposure and allocates risk to the more
risk-loving party, thereby ensuring ex post efficiency.

2.7 Hidden Information in Contract Design

Employer’s Utility:
Ue-0-(1-10-t)

where:
— The constant reflects the baseline level,
— 0 represents productivity,

— 1 — / represents time worked,



— t is the payment.
Employee’s Utility:

u(0-0+1)
where:

— [ represents leisure,
— t represents income,

— 0 relates to productivity information.

Assume that the employee knows 6 (with 6 € {6r,0y}) while the employer only knows the
probabilities P;, and Pp.

2.8 Revelation Principle

The revelation principle allows us to restrict attention to contracts that specify actions for each
state. In this framework, there are two contracts:

(EL,tL) and (KH,tH).

2.9 Effort Test Question

The Employer’s Problem under an effort test can be formulated as:

max  Pp U(€-00- (1= €1) = tr) + PuU(C-0n - (1= Ln) ~ tn) (7)
s.t. w(0r,lr +tr) >u(fr) (Individual Rationality for Low type), (8)
u(@m,lg +tg) > uw(@y) (Individual Rationality for High type), (9)

u(lp, 0 +tg) > u(lr, 0 +tr) (Incentive Compatibility for High type), (10)
u(lp,0p +tr) > ully,0r +ty) (Incentive Compatibility for Low type). (11)

In this setting, high-type employees receive information rents while low-type employees do not.

2.10 Hidden Action

When effort (i.e., 1 — £) is unobservable, the timing of events is as follows:

Step 1: The contract is chosen.
Step 2: The state 6 is realized.
Step 3: The employer observes the output.

Step 4: The employer pays based on the output.

Employee’s Problem: Given a contract, the employee maximizes:
max Py (1—0)u(t000)) + P u(t0nl)).
¢
Employer’s Problem: The employer designs the payment scheme by solving:

max Py (10 U(@L : t(GL)) + Py (1-20) U(HH - t(aH)),

subject to the participation constraint:
Py (1= 0)u(t(0r) +£) + P (1= O u(t(0n) + €) > & = u(0),

and ensuring that the employee’s effort choice satisfies the incentive compatibility condition.



2.11 Adverse Selection in a Simple Model of Exchange

1/23
“Often seen with Health Insurance” happens b/c of hidden info

Agent — Buyer

q
(g, T,0) = /0 p(x,0)dz — T

T T T
units purchased total cost/amount paid type/preference
Simplify
u(q,T,0) = 6v(q) — T,
with v(0) =0, v > 0 and v"” < 0.
- the higher the 0, the higher the marginal utility.
Assume 0 € {0,005} with 0y > 0.
Principal — Seller
=T —cq,
/]\

unit production costs

First Degree (Perfect) Price Discrimination

Assume Seller observes 6. You can tell if 8 is high or low type. Offer contracts (13, ¢;), i € {L, H}.
Assume buyer’s reservation utility is u.
Seller’s Problem:

Ij}g&xTi —cqi st Owu(q)—T, >u
i

(IR constraint)
The Lagrangian is

L£=T — g+ (00(q) — Ti — ).
Differentiating with respect to T; gives:
1-X=0 = X\N=1L1
Differentiating with respect to ¢; gives:

—et A (@) =0 = V(g =g

Then,
T; = Giv(q}) — .
Thus, the high type buys more and pays more. There is no surplus since the constraint is set
equal to u.
Adverse Selection

Now, assume the Seller does NOT observe the buyer’s type. The set of possible contracts is
T(q); any contract can be offered.



Linear Pricing

Seller only picks p. Starting with the Buyer:

max  G;v(q) — pg, (12)
FOC: 0;0'(q) = p, (13)
S0,
qf =v'"'(p/6;) = Di(p) (Demand, which is increasing). (14)
Seller’s Problem becomes:
max (p—)[BDL(p) + (1 — B)Du(p)] (expected demand = D(p)). (15)
The FOC is:

which implies:

«_._ D)
Dr(p*)

This is the monopoly price. Buyer surplus is given by:

Si(p) = O;v(Di(p)) — pDi(p).

p >c

Thus, the Seller always sells to high types and may or may not sell to low types, depending on
the values of 6 and £.
2-Part Tariff (Single)

The Seller charges a fee plus a per unit price. Let the fee be z and the per unit price be p,
provided no arbitrage exists. For any p,

z = SL(p),

i.e. the surplus of the low-type is taken as the fee so that the low type is indifferent to buying
the product. If

T(q) = 2+ pg = SL(p) + pa,
then the high-type buyer purchases a positive quantity and obtains surplus.

Seller’s Problem
max St(p) + (p — ¢)D(p).
The FOC is:

D(p) + 51.(p)
D'(p)
Since S} (p) = —Dr(p), for the low type the numerator is zero while for the high type it is

positive. This leads to a lower price so that consumption is closer to the full consumption level.
However, there is under-consumption relative to the perfect price discrimination case.

S.() +D(p) +(p—c)D'(p) =0, sothat p*=c— > ¢



Question: Can we do better if we draw in a non-linear pricing mechanism?
Optimal Non-Linear Pricing Problem

Seller’s Problem:

rjg(zgc ﬁ(T(qL) — ch) +(1-7) (T(QH) - CQH)

subject to
gi € arg max{&iv(q) — T(q)} for i = L,H (Incentive Compatibility)
q

and
O;v(g;) —T(g;) > 0 (Individual Rationality).

Solve in 5 Steps:

1. Apply the revelation principle: Without loss of generality, we can restrict T'(¢) to the set
{(T(qr),q1), (T(qm),qm)}. That is, it suffices to consider contracts for the two types as
long as they are incentive compatible.

2. Write the constraints:

Orv(qr) — T > Orv(qr) — T, > Orv(qr) > 0.

Thus, the IR constraint for the high type is not needed because the combination of the
high-type incentive constraint (ICH) and the low-type individual rationality (IRL) imply
it.

3. Delete one of the IC constraints and optimize the problem; then check if the deleted
constraint is satisfied. (The high type may want to mimic the low type, so we ignore the
low-type IC constraint initially.)

4. At the optimum, both ICH and IRL bind. If Ogv(qy) — T is strictly greater than required,
one could raise the price Ty to capture more surplus. Similarly, 77, is increased until IRL
binds.

5. With these constraints binding, substitute the equality constraints into the objective:

max  B(0rv(gr) — eqr) + (1= B)(0uvlan) — cqn — (On — 0r)v(ar)).
ar.qH

The term 07,v(qr)—cqr represents the full surplus of the low type, which is fully appropriated
by the seller, while the high type’s surplus is maximized minus the information rent. If
too much surplus is taken from the high type, the high type will mimic the low type.

FOC for q;:
BOrv'(qr) —c— (1 = B)(0m — 0.)v'(qr) = 0,

or equivalently,
c

00 (q)) = 5 o g, >
1 =8 0u-0r
B oL

FOC for gy:
(1=B)(0uv'(gn) =) =0 = Ouv/(gir) =c.

This implies that ¢; < ¢j;. With the ICH binding and ¢ < ¢j;, the ICL holds. In summary,
while there is a distortion at the lower end, the allocation for the high type is efficient.



2.12 Optimal Non-Linear Pricing

2.12.1 Two Types

We will not be asked to solve these problems on tests or comprehensive exams; most questions
describe the story rather than require detailed calculations.

2.12.2 Step-by-Step Approach

Step 0) Write out the seller’s problem (maximizing the objective over contracts, subject to

buyer individual rationality constraints).

Step 1) Apply the revelation principle. This simplifies the contracts and, consequently, the
buyer’s incentive compatibility (IC) constraints.

Step 2) The ICy constraint can be eliminated because IC'y combined with I Ry, implies 1C.

Step 3) Delete the ICT, constraint initially (since the high type may mimic the low type) and
check it later.

Step 4) Note that ICy and IRy, bind at the optimum.

Step 5) Solve by unconstrained maximization.
This approach can be extended to models with three or four types.

2.12.3 Optimal Non-Linear Pricing with a Continuum of Types

Assume that © ~ F'(f) with probability density function f(6) on [0, 6]. The distribution F'(9) is
known to the seller, but the individual type @ is private information.

Seller’s Problem:

max [ (1) - ca®)] 5010,

subject to the incentive compatibility condition:
a(0) = argmax{0v(q) = T(q)} V0,
and the individual rationality condition:

0v(q(0)) —T(q(0)) = 0.

1) Apply the Revelation Principle

e [ 1) —ca] 1010,

subject to the constraints:
Ou(q(0)) — T(0) > 6v(q(0)) —T(0) V9,0 €O (ICy),

and
0v(q(0)) —T(q(0)) 20 VO (IRy).



2) Simplify the IR Constraints
0u(q(0)) —T(0) = 0v(q(8)) — T(8) = Ov(q(8)) —T(8) = 0.
Thus, it suffices to impose the constraint:

Ov(q(0)) — T(0) > 0.

3) Strategy: First, determine which contracts are implementable (i.e., which satisfy incentive
compatibility). Then, choose the best contract among those.

Lemma 1: If

o [ >

then the incentive compatibility constraint ICy holds if and only if

da(9) >0 (monotonicity),

do
and the local incentive compatibility (LIC) condition holds:

In other words, the marginal rate of substitution must be increasing in type.
Monotonicity: This requires that the quantity ¢(f) increases in type.

Local Incentive Compatibility: The first-order condition for the buyer’s problem yields

A

91)'((](@))dqd<;) @) =0 atd=0,

which confirms local incentive compatibility.

Envelope Theorem: Since the buyer maximizes utility, the envelope theorem implies that

where w(6) = Ov(q(0)) — T'(0) represents the buyer’s welfare in equilibrium. Integrating yields

0
w(®) = [ vla(a))de +w(o),

and because the IR constraint binds at 6, we have w(f) = 0. Since T'(0) = Ov(q(#)) — w(d), the
seller’s profit can be rewritten as:

= ["[p0(a()) ~ (o) - ca0) 10)d0 (16)

_ /:[91)(9(9)) _ /GQU(Q(x))dx - cq(e)}f(e)da. (17)

10



Integration by Parts: Let

u(f) =

[ ﬁ

v(q(z))dr and dv = f(0)do.

Then, by integration by parts,

6
|| va@)a - Fe)as
appears in the expression for II. Thus, the seller’s problem becomes pointwise:
1-F (9)} _
f(9) ’
which implies that only the highest types receive the full surplus.

FOC: v/(q(0))[0

Note: The term 1}59()9) represents the inverse hazard rate. An increasing hazard rate guarantees
the monotonicity of ¢(6).

3 Signaling

3.1 Signaling/Informed Principal Problem
Model Setup
— Informed principal, uninformed agent.

— Spence (1973, 1974) Model of Education:

— Two types of workers: L and H, with productivity ry for low and ry for high types, where
rg >rp > 0.

— Workers are willing to work at any wage w > 0.

— The firm holds a prior belief 3; € [0,1] that r = rp.

— The firm is willing to hire workers at any wage below expected productivity.

— A worker of type ¢ can obtain e years of education at a cost
Ce)=0; e,

where 0 < 01, (i.e. the marginal cost for an extra year is lower for high types).
— Years of education is observable (single crossing condition).

— Education has no effect on productivity.
— Stage 1: The worker chooses e.

— Stage 2: The wage is chosen by bargaining. (Assume the worker holds all bargaining power.)

Benchmark (Full Info)

—eg=er =0, wy =rp, wy =ry (the firm pays a wage equal to productivity).

Hidden Info

Let 5(0; | e) be the agent’s posterior belief about productivity. Then the wage function is given
by:

w(e) = B(0n | e)ra + B(0L | e)rr (18)
= B0u | &) + (1= B0 | €))re. (19)

11



Game Theory Concepts

— A game is an interaction between two parties.

— For example, in chess there are players, payoffs (e.g., 1 for a win, 0 for a loss), actions, and
strategies (mappings from states to actions).

— Nash Equilibrium: A situation where no player has a unilateral incentive to deviate.

Posterior

Let P;(e) denote the probability that worker i obtains e years of education.
Since games can be dynamic, strategies might be mappings from histories to the action space.
This necessitates the use of uncertainty and beliefs; hence, Bayesian Equilibria are applied.

Perfect Bayesian Equilibrium in Signaling Games

Definition 1 A Perfect Bayesian Equilibrium in a signaling game is a set of (possibly
mized) strategies P;(e) for the principal’s types and conditional beliefs 5(0; | e) for the agent
such that:

1. All levels of e observed with positive probability in equilibrium maximize the worker’s
expected payoff, i.e.,

e e argmealux{ﬁ(QH | e Yrg + B0 | e)rr — 0i6/}7

which represents wage minus the cost of education.

2. Firms pay workers their expected productivity:
w(e) = BOn | e)rg + B(0L | e)rr.

3. Firms’ posterior beliefs satisfy Bayes’ Rule whenever Pi(e) > 0 for some i.

4. Posteriors are otherwise unrestricted.

Reasonable Guess
A reasonable guess is to set:
B0 |e)=1 ife>é 0 otherwise.

Thus, one might have:
Pr(e)=1 ife=2¢ 0 otherwise,

and
Pr(e) = 0.
Types of Equilibria
Generally, there are three types of equilibria:
1. Separating: The signal ¢; identifies the type exactly.
2. Pooling: The signal e; reveals no information about type.

3. Semi-Separating: The signal e; reveals some, but not all, information.

12



Separating Equilibrium

Definition 2 A separating equilibrium is a Perfect Bayesian Equilibrium in which er # er,
and the beliefs satisfy
BOn |en)=PB0OL |er) =1,

so that the observed action reveals the worker’s type and wages are set as w; = r;.
For the low type, the constraint implies:
er, = 0.
For the high type, the incentive compatibility conditions are:
—rg—0ge>rp  (ICq).
—rg—0re<ry, (ICL).

Solving these gives:
rg —r rH—T
e < HZ 'L and e > u
On 0r,

Thus, a separating equilibrium requires

rg —Trrp rgH—TL
e}‘{e[ g ]
L H

Note that high types incur an education cost relative to the benchmark where no education is
provided.

Equilibrium Continuum
There is a continuum of equilibria depending on beliefs:
Bl |e)=1 Ve>ey,

all of which are consistent with Bayes’ Law.

Pooling Equilibrium
Definition 3 A pooling equilibrium is a PBE where

€ = €L = eép,
with beliefs B0y | ep) = B and B(0L | ep) = PL.

Then the wage is given by:
w(ep) = Pury + Brrr =T.
Incentive compatibility requires, for example,
r—60rep >ry (ICL).
Beliefs are assumed to be
B0 |e)=pPu Ve>ep, 0 otherwise,

and similarly for B(0r, | e). Thus, there exists a pooling equilibrium with

Bura + Brrr — L
) GL *

A selection mechanism is needed to choose among multiple equilibria.

ep € |0

13



Equilibrium Selection
To choose between PBEs, refinements such as the Cho-Kreps Intuitive Criterion are applied.

Definition 4 Let
Uz‘* = w;k(ez-) — 97;61'

denote the equilibrium payoff for worker i. The Cho-Kreps Intuitive Criterion then states that
for any deviation e such that

rg —bje < Uj and rg—0e>US
for some j # i, the posterior belief should satisfy
B(0; | e) = 0.

In other words, if a deviation is strictly dominated for one type but not for another, the dominated
type should not be assigned positive probability off the equilibrium path. Applying this to
pooling equilibria typically eliminates them because there always exists a profitable deviation
for the high type.

Educational Productivity

What if education ¢s productive? In that case, r also reflects productivity, so higher education
implies higher productivity. Then there exists a maximum education level in the interval

[T’HT‘L T‘HT’L:|
0 Oy '

Applying the Cho-Kreps incentive constraint to separating equilibria, we have:

rH—TL TH—T
er, =0 and eHE{H L TH L}.

0 Ou
A calculation shows that only

6* _ TH —TL

H= "

survives, meaning high types acquire just enough education to signal their type. Even if the
probability of being low type, 5L, is very small, signaling remains wasteful but important.

3.2 The Market for Lemons — Akerlof (1970)
“You get this thing but you don’t know if it sucks or not. A lemon is a piece of poor quality.”

1. Product quality may be heterogeneous.

2. Sellers are better judges of quality than buyers.

Stylized Model
Preliminarily, assume there are four types of cars:
1. Good, with probability q.
2. Bad, with probability 1 — q.
3. New.
4. Old.

Here, ¢ is common knowledge and, after owning a car, its quality (good or bad) is revealed.

14



Other Assumptions

— Both good and bad cars must sell at some price (buyers cannot distinguish quality).

— Used cars cannot have the same valuation as new cars.
— If they were valued equally, trading would continue until only good cars remain.
— This implies that most traded used cars are lemons.

— Consequently, the market may unravel.
Generalized Model
Define:

p — price of a car,

p — average quality of a car = QY = D(p,p), < up).
There are two groups of traders who maximize expected utility:
Up=M+Y

U2:M+ngza

(22)

(23)

where M denotes all other consumption and z; is the quality of the ith car. Assume Group 1
owns N cars and Group 2 owns none, with car quality z ~ UJ0,2]. Let the price of M be 1 and

Y; be the income of a type i trader.
The demand by Group 1 is:

Bty > p,
D
0 ifpu<np.

The supply offered by Group 1 to Group 2 is:

- N
Slsz if p <2,

with
p="
5

The demand by Group 2 is:

Y2 if 3 >p,
DQ: P 2M_
0 if%,u<p.

Supply by Group 2 is zero. Hence, total demand is:

B ifp < p,
D(p)=q%  ifu<p<ipy
0 if%u<p.

At price p, since pu = g, we have

Wl fp <t

p
D __ Y- e D 3p
)
0 if = < p.

15



Because § < p and %Tp < p always hold, the model suggests we are always in a no-trade zone.
Nevertheless, for any p € [0, 2] there exists some seller-buyer combination that would like to
trade. Continuous updating of beliefs may eventually lead to a situation where the only car
offered is of zero quality. This is a manifestation of adverse selection and is analogous to issues
observed in health insurance markets—one reason for mandates or subsidies.

3.3 Milgrom & Roberts — Advertisements

“What if expenditure on ads were observed?”
Then, ad expenditures serve as a signal of quality. One might ask, “Can we learn about quality
from prices?”

Model:

— A firm produces a product of quality ¢ € {H, L}.
— The firm knows its own quality, while the consumer does not.
— The firm chooses both a price p and advertising expenditures A.

— Only the firm’s initial choices and the resulting consumer beliefs (not the dynamic aspects)
are analyzed.

— Let ¢(p, A) denote the consumer’s belief that ¢ = H.

— The profit function m(p, g, ¢) is such that ads affect gross profits only indirectly via ¢ (i.e., ads
do not affect demand directly).

Let p? denote the profit-maximizing price for a firm producing quality ¢ when consumers
believe the product is of quality q. Define

7(p,q,L) =m(p,q,0) and =(p,q,H)=m(p,q,1).

Under full information, the firm chooses p = p? and A = 0.

Proposition 1: A separating equilibrium exists if and only if there exists (p, A) > 0 such
that the low-quality firm does not advertise while the high-quality firm advertises. Specifically,
the incentive constraints are:

m(p, H, H) — A>n(pf,H,L) (ICg)

and
W(vaaH)_ASﬂ-(pﬁvaL) (ICL)

Together, this implies:
w(p, H H) —n(p ,H L) > A>n(p,L,H) — n(pt, L, L).

In any separating equilibrium, the low-quality firm chooses (p%,0) while the high-quality firm
selects some (p, A) so that £(p, A) = 1 and £(p¥,0) = 0, thereby satisfying incentive compatibility.

Proposition 2: Considering Kreps’ strategies, there exists a separating equilibrium if and
only if there exists (p, A) satisfying Proposition 1. In any separating equilibrium, the pair
(pm, Apr) must solve:

max w(p, H H) — A, (24)
p,A
st. w(p,L,H)—A<=(pk, L, L), p,A>0. (25)
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If A* > 0, then the optimal price p* solves:
HIIE)iX {ﬂ—(vaaH)_T((paLvH)}7

which reflects the idea that advertising induces consumers to believe the firm is of high quality.
The constraint
m(p, L, H) = 7(pf, L, L) > 0

ensures incentive compatibility for the low type. Notice that in this formulation the variable
A drops out because if a positive expenditure is optimal then the marginal benefit equals the
marginal cost.

3.4 Screening Paper — Torture & the Commitment Problem

Consider a planned terrorist attack. A suspect, who may possess valuable information, is

interrogated. The suspect could be either uninformed (or innocent) or the planner (informed).

Note that any rational initiation of torture can be used to justify its continuation.
Commitment Problems:

1. The interrogator (P) cannot commit to stopping torture, reducing the suspect’s incentive
to reveal information.

2. Even if, after extensive torture, it becomes clear that the suspect is innocent, the incentive
to stop torture may be insufficient, thereby encouraging the suspect to remain silent.

Thus, an informed suspect will generally not reveal information in order to prompt a cessation
of torture.

What is the Value of Torture? It has an upper bound; in equilibrium the value of torture
can be zero.

Model:

Torturer (P)

Suspect (A): Informed with probability 1o (possessing information quantity x) and unin-
formed with probability 1 — ug.

— In continuous time, torture imposes a flow cost of A on the suspect and a cost ¢ > 0 on the
torturer.

— Ticking Time Bomb: If the suspect reveals z < x and is tortured for 7 < T', then A’s payoff
is

—z— AT,

while P’s payoff is
z—cT.

Infinite Horizon:

P demands y units of information and commits to torturing for a duration 7(y) if the suspect
does not confess. One must account for the possibility that an informed suspect may act as if
they were uninformed. P’s payoff becomes:

poy — (1= po)er (y).
For an informed agent, the incentive constraint (ICA) requires that:

y < A1(y).
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When this binds, we have y = A7(y). Assuming that 7(y) = X, P’s payoff simplifies to:

C

poy — (1 — uo)A‘y =y (Mo —(1- Mo)Z) : (26)

If the term in parentheses is positive, then the optimal is y = x (i.e., the suspect reveals all
information). Hence, P can commit to a menu of torture durations:

Theorem 1 — Full Commitment (Infinite Horizon): If oA — (1 — pp)c > 0,

then P demands y = min{x, TA}.
(27)

and tortures for
. x T
min{ — .
157}

In this case, (1) innocent or uninformed suspects are always tortured (since they cannot provide
the demanded information), and (2) informed suspects will reveal all their information if the
time horizon is long enough. Without a mechanism to exempt the innocent, even the guilty
might have no incentive to disclose information.

Limited Commitment:
If P is not bound to a precommitted torture duration (i.e., P can extend torture at will):

— If the suspect provides some information, P may try to extract more.
— If the suspect does not provide information, P may intensify the torture.
— P will only stop when the cost becomes prohibitive.

Time is divided into discrete periods. Suppose P demands y; in period ¢ and commits to
suspending torture if the suspect complies:

If the suspect complies: P’s payoff u; = y;, A’s payoft v, = —y; (28)
If the suspect does not comply: u; = —c¢, vy = —A. (29)

With a common discount factor §, the total payoffs are:

o0

U=(1-6)) 6w, (30)
t=1

V= —5)i6t_1vt. (31)
t=1

Multiple equilibria may arise. In a worst-case equilibrium, regardless of how high pg or the
demanded information z is, there exists an equilibrium in which the value of torture is zero.
This outcome is driven by the commitment problem: actions taken today are not credible for
the future. If A confesses, the continuation game becomes one of complete information and
P, knowing that A is informed, may renegotiate to extract the remaining information x — y.
Consequently, A might never confess.

When z is uncertain, the problem worsens. One can establish a lower bound for the value of
torture (which is zero, independent of pp) and an upper bound by recasting the problem as a
finite game. In finite games, backward induction reveals that in the last period the suspect can
reduce the value of torture, leading to negative payoffs. Thus, in settings involving screening,
commitment problems inherently arise since actions today may not align with future actions.
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4 Hidden Action & Moral Hazard

4.1 Overview

In settings with hidden action, the principal (P) must design a contract that induces the agent
(A) to behave as if his effort were perfectly observable. Key points include:

— P hires A to perform a task.

— P cares only about performance.

— P chooses the agent’s effort, which is both unobservable and costly.
— Performance increases with effort.

Optimal Contract Considerations:

— Employees desire a guaranteed baseline. When incentives are added, the principal must
“sacrifice” part of the marginal product to provide the guarantee.

— Classic examples include insurance and sharecropping.

— Often a copay or fixed component is introduced.

4.2 Two Outcome Case

Assume that the performance measure g takes on only two values: ¢ = 0 (failure) and ¢ = 1
(success). The agent chooses an action a (effort) such that performance increases in a. We
suppose that

P(g=1]a)=p(a), withp'(a)>0, p"(a) <0, (32)
p(0) =0, p(cc)=1, and p'(0)=1. (33)

The utilities are given by:
— Principal’s Utility: V(¢ — w).
— Agent’s Utility: u(w) — ¥(a), with «/(w) > 0, ¥'(a) > 0, and ¥”(a) > 0.

For simplicity, we assume that ¥(a) = a.

4.2.1 Benchmark: Full Information

When effort is observable, the principal solves:

max p(a)V (1 —wi)+ (1 —p(a)) V(0 — wp) (34)
s.t. pla)u(wr) + (1 — pla))u(wy) —a>u (IR). (35)

The corresponding Lagrangian is
L=p(a)V(1—wi)~+ (1—-p(a))V(0—wp)

+ Alp(@)u(wi) + (1 = p(a))u(wo) — a— 1. (36)
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The first-order conditions (FOCs) with respect to wp, wi, and a are:

8850 i = (1=p(a))V'(0 —wo) + A(1 — p(a))u'(wo) =0, (37)
86,{51 T p(a)V'(l — ’lUl) + )\p(a)u'(wl) =0, (38)
gj‘p%”wﬂ—wﬂ—V@—Wﬂ+APWﬂ—Mwﬂ—A:a (39)

The Borch Rule (or optimal coinsurance condition) implies that the marginal utilities in each
state are equalized. In this benchmark, one can solve for the optimal a* once the multiplier A is
pinned down.

4.2.2 Example: Risk Neutral Principal

Assume that the principal is risk neutral so that V(z) = 2 (and hence V'(z) = 1). Then, from

the FOCs we obtain 1 1
W(wo) ' (wn) o=

This implies full insurance for the agent. Solving for a then involves the condition

p'(a*) [1 — (w1 — wo) + AMu(wy) — u(wg))} - A=0.
With full insurance (w; = wyp), if we set A = 1/u/(w*) (with w* = w1 = wy), the marginal
product (MP) of effort equals the marginal cost (MC) for the principal.
4.2.3 Example: Risk Neutral Agent
Now assume that the agent is risk neutral, so that u(z) = z and «/(x) = 1. In this case,
A=V (wy)=V'(1—w)) = wo=1-—w,

or equivalently,
w1, — Wy = 1.
This differential in wages reflects the value of a successful project. In addition, the agent’s
incentive condition gives
P/(@)[V(1 = wi) = V(=wo) +A (wi — wo)| = A =0,
-0 =1

so that
1

~ MP of effort’

which in turn equals the marginal cost of effort from the agent’s perspective. When the action a
is unobservable, an incentive compatibility (IC) constraint must be added:

p'(a)

Jmax p(a)V (1 —wi)+ (1= p(a))V(0 = wo) (40)
s.t. p(a)u(wr) + (1 — p(a))u(wy) —a > 0, (41)
a € arg mgx{p(&)u(wl) + (1 —p(a))u(wo) — &}. (42)

The agent’s IC condition yields
P (@)[u(wr) = u(wo)| = 1.
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4.3 Case: Bilateral Risk Neutrality

In the case where both parties are risk neutral, suppose p’(a*) = 1; then from the agent’s IC we
have
u(wy) — u(wy) =1,

implying w1 — wg = 1. This outcome corresponds to the first-best allocation. In practice,
one might implement this by selling the output up front to the agent (subject to a resource
constraint). For example, if the agent is resource constrained so that wp > 0, one may set
wo = 0 and w; = 1. However, this may leave the principal with zero expected profit, which is
undesirable. To generate profit, the principal might set wy = 0 and then solve:

max p(a)(1 —wr) (43)
st.p(a)wy =1 (IC). (44)

Analysis of the FOCs shows that when p’(a) > 1, the optimal effort satisfies a* < 1; that is, the
agent exerts less than the first-best level of effort due to the resource constraint in the contract.

4.4 Incorporating Risk Aversion
4.4.1 Bilateral Risk Aversion

If the agent is risk neutral and the principal is risk averse, the optimal contract might involve
selling the output up front. Conversely, if only the agent is risk averse while the principal remains
risk neutral, a constant (fixed) wage results—offering no incentive for effort.

4.4.2 True Bilateral Case
When both parties are risk averse, the Lagrangian for the principal’s problem becomes
L =p(a)V(1—w)+ (1 -p(a))V(-wo)
+ A p(ayu(wr) + (1~ p(a))u(wo) — a — 1]
+ X[p (@) (u(wn) = u(wo)) —1]. (45)
Taking the FOCs with respect to wg and wy gives, respectively,
oc

dwy (1 = p(a))V'(~wo) + )\IR(l — pla))u/(wo) — )\Icp/(a)u’(wo) =0, (46)
551 c = pla)V' (1 —wi) + MEp(a)u' (wr) + M (@) (wy) = 0. (47)

These conditions can be rearranged into:

V' (—wo) __yIR _IC p'(a)

o) 0 Tople) “8)
V/(l — wy) _\IR IC’p/(a)

W) N b (9

When M€ = 0, we recover the Borch Rule. In the presence of risk aversion, however, one typically
finds that A'¢ > 0, reflecting the additional cost of providing incentives under uncertainty.
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4.5 Multidimensional Tasks
Consider now the case where the agent performs two tasks with independently distributed
outputs. Suppose the agent’s cost function is

1
U(ai,a2) = 5(0100% + C'W%) +daaz, (50)

with

0<0<vC,0s.

When § = 0, the tasks are technologically independent; if § > 0, raising effort in one task
increases the marginal cost of the other (they are substitutes). A typical linear contract takes
the form

w=1t+ S1q1 + S2¢s.

The principal’s problem is
maxE[ql +q2 — w} s.t. E[— exp(—n(w - %(Cla% + Cya3) — 5a1a2))} > w, (51)

q1,492

where w represents the agent’s certainty equivalent compensation:
1
w=1t+ S1a1 + Syas — g(Sfaf + 52203) —5 (01(1% + C2CL%) —daian. (52)

The agent chooses efforts a; and as to maximize w. The first-order conditions for the agent are:

Sl — C’lal — 5&2 = 0, (53)
SQ — CQCLQ - 5&1 =0. (54)
Solving these equations yields
g o= €2 =05 - 5201 — 485 (55)
T OG-8 T iy -6t

The principal then chooses piece rates S and Ss (subject to an individual rationality constraint)

to maximize his expected profit. Analysis shows that if it becomes harder to monitor one task

(e.g., 03 increases), then the optimal piece rate So decreases, and by complementarities, S; may

also fall.

4.6 Multidimensional Incentives: The CEO Example

Principal-Agent Framework
— Principal: The company’s shareholders.

— Agent: The CEO.

Model Setup Assume that:

— Profits: ¢ = a+ ¢4 with g, ~ N(0,02).

~ Stock price: p = a+ e, with g, ~ N(0,07).

— Covariance between ¢ and p is given by o4, = Cov(g, p).

Common effort a generates correlation between outcomes.
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Preferences and Compensation Structure The CEQ’s utility is assumed to be
u(w,a) = — exp(—n{w — @D(a)D, with ¥(a) = 1ca’.
The principal is risk neutral. A typical compensation package is
w=1t+sq+ fp,
where:
— t is a fixed salary.

— 8¢ is a bonus tied to profits.

— fp is the CEQ’s share of the firm’s equity.

Principal’s Problem The principal maximizes expected profit:

Flg —
pugps Pla vl

s.t. E[— exp(—n{w — %caﬂ)} > — exp(—nw) (IR) (56)
a € argmax E{— exp(—n[w - %caQD] (IC). (57)

Solving the agent’s problem yields the certainty equivalent wage:

- ca® 1 2 2 2 2
w_t+(s+f)a—7—§[s o, + f ap+25faqp}. (58)
The IR constraint then becomes
w > w,
and the IC condition implies that
«_StH/[
a =
c

Principal’s Optimization Substituting the binding IR constraint to eliminate ¢, the princi-
pal’s problem reduces to choosing s and f to maximize

2
Ir;%cxs—ic—f—t—(s—l—f)stf—i-;(Stf) —w (59)

which can be rearranged into

max (1 s+ /) # + D[22 + f202 + 25f0y) — w. (60)

The first-order conditions with respect to s and f yield:

FOC(s) : 1—(Sc+f) + 77[802 + faqp} =0, (61)
FOC(f) : 1_(“2”) [ fo + sog,] = 0. (62)

Subtracting these two conditions gives
f(crg — O'qp) = 8(02 — aqp) — =4 = (63)
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After further manipulation and letting

one obtains the optimal shares:

sF=—P (64)
K(l — cnK)
05— 0
f* —_ q qp (65)
K(l — cnK)
Special Cases
— Case 1: If 04, = 0 (no correlation between stock price and revenues),
2
* Up
o 0202 +ncolos’ (66)
2
o
R (67)

0202 +nco2ol
As 012, increases, s* increases (more bonus on profits) while f* decreases.

— Case 2: For a risk neutral CEO (n — 0), one finds f* — 1 and s* + f* — 1. In other words,
the CEO becomes the sole residual claimant.

— Case 3: Under noisy measurement, suppose
2
ep=¢€q+v, v~ N(0,0;),

so that a = a + 02 and Ogp = 0' . Then one obtains f* = 0, meaning no equity share is
given, and all 1ncent1ve is pr0v1ded via the bonus s*

Key Takeaways:

— The optimal structure of CEO compensation depends critically on the relative variances and
covariances of the performance measures.

— A higher volatility in stock price (larger o ) induces a higher profit bonus s*

— When performance is measured more precisely (larger Jg), the optimal equity share f*
increases.

5 Moral Hazard with Adverse Selection

5.1 Main Problem

Consider a buyer (Agent A) with two possible types, 05 and 0r, where 6, < 0. The seller
(Agent P) holds the prior belief that

P =0u)=p.

The revenue is uncertain, with the output X € {0, R}. Revenue R is generated with probability
e - 0, where the cost of effort is given by



The seller offers contracts specified by the pair (r;,t;), where r; denotes the royalty and ¢; is a
transfer payment.

We begin by analyzing the buyer’s problem before returning to the seller’s (principal’s)
problem.

Buyer’s Optimization Problem. For a given contract (r;,t;), the buyer maximizes:

2
max Oie(R—1r;) —t; — %. (68)
The first-order condition (FOC) for effort is:
0;(R—r1i) —ce=0, (69)
6* _ GZ(R — 7’1') (70)
c
Substituting e* back into the buyer’s payoff yields:
[0:(R — )] [0:(R — )]
E f)y=——— —t; ————— 71
(payoff) = 0 - ()
[6:(R — ;)]
50 (72)

Seller’s (Principal’s) Problem. Recognizing that the seller’s problem depends on the buyer’s
type, we have:

2 _ 2 —
max § (tH N W) N (tL N M) 7 (73)
. — )12
s.t. W —t; >0 (Individual Rationality, IR); (74)
. —_ ».\2 . _ )12
wZ(RQCn)] —t; > W —t; (Incentive Compatibility, IC). (75)

How Do We Solve This?
Case: No Moral Hazard. When the buyer’s type is known, the seller’s problem simplifies to:
HE(R - ’r‘i)T‘Z’

max {4~ (76)
0:i(R — ;)]
5.t [(R%T)]—tizo (IR). (77)

By substituting the IR constraint, we obtain an optimization problem in r; only:

[0:i(R—ri)]*  07(R—ri)r;

78

max R — (78)
02(R — ;) R —r;

_ b : 79

e (79)

= S s (B2 -12). (80)

Taking the first-order condition with respect to r;:

267

ri=0 = r;=0.
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Thus, in the absence of moral hazard, there is no need to provide effort incentives; the contract
is priced solely based on type. The corresponding transfer is then:
62 R

t; = .
! 2c

Fixed Effort Case (No Moral Hazard). Suppose the effort level is fixed at é and is
observable. The seller’s problem becomes:

HIE%HX 5(75[{-%9[{@7“1{)4-(1—5) (tL+9LéTL), (81)
cé?

s.t. Qzé(R — TZ') — ti — 7 Z 0, (82)

gzé(R — ’f‘i) — ti > Gzé(R — Tj) - tj. (83)

Here, we may ignore the IR constraint for the high type and the IC constraint for the low type,
since the IR constraint for the low type and the IC constraint for the high type are binding.
Thus, we have:

. cé? . cé?
IRy : 9Le(R—rL)—tL—7ZO — tL:‘gLG(R—TL)—77 (84)

ICH : GHé(R—rH)—tH ZQHé(R—?”L)—tL — tH:eHé(R—TH)—(QH—QL)é(R—TL)

(85)
The seller’s objective function can then be written as:
. . cé? .
max 5[9H6(R —rg)— (0g —0p)é(R—rp) — — + 0gé TH}
TH,TL 2
R cé? .
+(1—5){9L€(R—TL)—7+9L67“L]. (86)
One approach is to set rg = R and r;, = R, with the corresponding transfers simplifying to
cé?

In this configuration, the entire return is allocated to the seller, and the firm’s effort is identical
regardless of ownership. The low type becomes indifferent, while the high type secures an
information rent. When a royalty is imposed, ¢ty decreases whereas t;, remains unchanged.

General Case. Returning to the original problem and assuming that the IR constraint for
the high type and the IC constraint for the low type are non-binding, we impose the binding
constraints for the low type and the high type:

0 (R — 2
IRy : tp = M’ (87)
2¢
02 R — 2_92_92 R — 2
ICy: ty= Hl H) (0% 2)( rL) _ (88)
2c
Substituting these expressions into the seller’s objective function yields:
5|00 == R =i R
THTL 2c c
02(R—rp)? 62(R—
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The first-order condition (FOC) with respect to 7y is:

02 02
BTH(R — )+ BTH(R —2ry) =0,

which implies r = 0. In this case, the business is effectively sold at a high price with the
distortion arising through the royalty. Although efficiency is not completely lost, an information
rent is still paid. The payoff to the high type is:

(03 —67)(R - TL)Q‘

2c
Similarly, the first-order condition with respect to r;, simplifies to:
07, — 6% 1 — B)6?
/B(H L)<R—7’L)—( /6) LT‘L:O,
c c

yielding the optimal royalty for the low type as:

B — 07 R
B0} —07) + (1= B)oF
Thus, the high type captures the full surplus by charging as much as possible, while the distortion

is introduced through the royalty imposed on the low type, reducing the return from effort for
the latter.

ry = with 0 < r} < R.

5.2 Former Comp Question: Dynamic Moral Hazard
We now present a related problem involving dynamic moral hazard in a simple, two-period
setting.
Problem Setup. An employee works over two periods, t = 1,2, and chooses an effort level
e € {er,em}. In period 0, the cost of effort is specified as:
cler) =0, cleg)=C.

There are two possible outputs, g and ¢y, with:

Plgg=qu|es=ey)=mg and Pl =gqr|e=er)=r7p.

The contract offered is a pair of wages, {wi(q1), w2(q1,42)}.

Employee’s Utility and Firm’s Profits. The employee’s utility is given by:
u(wy) + u(ws) — c(e), with v/ (w) > 0 and v (w) < 0 (reflecting risk aversion), (90)
and the firm’s profits are:

q1 + g2 —wi; — wo.

First-Best (Effort-Contingent) Case. Assume that the objective is to implement the high
effort e. In the first-best case (where wages can be conditioned on effort), the problem is:

max F [ql + g2 — w1 — w2 ‘ 61{] , (91)
w1 ,Wa
st. Efu(w) +u(we) — Clen] > 1, (92)

where u represents the employee’s reservation utility. The corresponding Lagrangian is:
L=mgqu+ (1 —7g)qr +7aqu + (1 —7)qr — w1 — w2 + Au(wr) + u(ws) — C — 4.
The first-order conditions yield:

o (wy) = v (we) = %
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Unobservable Effort Case (Moral Hazard). In the case where effort is unobservable and
the seller (principal) still wishes to implement e, the problem becomes:

max  Efq +q2 — w1 —wa|en], (93)
st. E[u(w) +u(wy) —Cley] >u (IR), (94)
E [u(wr) + u(wz) — C|eg] > E [u(w1) + u(wz) — Cler] (IC). (95)

Thus, the moral hazard problem is the same as the first-best problem but with an additional
incentive compatibility constraint.

Wage Structure. The wage functions are specified as:

wi(qr), wilqn), walqr,qr), wa(qm,qm), w2(qr,qm),

with the property that the wages for the outcomes wa(qm, qr) are set equal to the corresponding
wages in the symmetric outcome.
The Lagrangian for this problem is:

L=rgqyg+ (1 —7g)qr — wi —wy + \[mhul

6 Related Literature to Contract Theory

6.1 Gale & Shapley (1962): College Admissions & Stability of Marriage
Problem: How do we match two sides of a market when the two sides have incomplete
information about each other?

College Admissions Setting

Consider n applicants and a college with a quota of ¢; available slots. The fundamental question
is: What should the college do?

¢ Offer admission to the top ¢; applicants:

— Issue: The college does not know if the applicants applied elsewhere.

— Issue: The college does not know how applicants rank the college, nor where else they
have been admitted.

e One might ask whether students should be required to rank colleges and whether they
might lie.

e Waitlisting: This mechanism can help avoid the above problems.
— New issue: If a student is waitlisted at a more preferred college, will they accept the
offer from the waitlisted college?
Assignment Algorithm Design

Consider n applicants and m colleges, where ¢; is the quota of the i college. The inputs are as
follows:

o Each applicant ranks the colleges (omitting only those they would never attend).

o Similarly, each college ranks the applicants (omitting only those it would never admit,
even if the quota is not reached).

The goal is to combine these two rankings and create an assignment mechanism that satisfies
certain criteria.
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Notation and Stability Criteria

Let colleges be denoted by A and B, and applicants by « and 5. The preferences can be
expressed as:

A=y B B =a a, (96)
B =B A g 5. (97)

Thus, not everyone is equally satisfied.

Definition of Unstable Assignment

An assignment is unstable if there exist two applicants, o and 3, assigned respectively to
colleges A and B, such that

A>3 B and f >4 a.
Definition of Optimal Assignment

An assignment is optimal if every applicant is at least as well off as under any other stable
assignment. In elementary economics, a second or third choice is always suboptimal. (For
example, the first choice is optimal for men and the second for women.)

Marriage Stability Theorem

Theorem 1: There exists a stable set of marriages.

Proof (Constructive): The proof proceeds via the following algorithm:

1. Each man proposes to his favorite woman. KEvery woman who receives two or more
proposals rejects all but her favorite proposal. (Note: Women do not immediately accept
their favorite proposal.)

2. Rejected men propose to their second choice. Women reject all proposals except their
favorite among the new proposals along with those from the first stage.

3. Continue this process until every woman has received at least one proposal. (This terminates
in <n?—2(n+1) steps.)

4. Finally, match each man with a viable woman.

Proof of Stability

Suppose that an applicant « is not matched with a college A even though « prefers A to his
assigned college B. Since a proposed to A before proposing to B, A must have rejected a,
implying that A preferred some other applicant to a—one to whom she could have been matched.
Hence, the matching is stable.
College Deferred Acceptance Algorithm

1. Students apply to their first-choice college.

2. Each college 7 waitlists its top ¢; applicants and rejects all others.

3. Rejected students then apply to their second-choice colleges; colleges clear their waitlists.

4. The process repeats until every student is either waitlisted or rejected.

Theorem 2: Every applicant is at least as well off under the deferred acceptance mechanism

as under any other stable mechanism.
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Proof by Induction: Define a college as possible for an applicant if there exists a stable
assignment that assigns the applicant to that college. Assume that, up to a given point, no
applicant has been rejected from a possible college. Suppose college A receives applications
from applicants 31, ..., 3, and rejects o. We wish to show that A is impossible for «. Since
each f; prefers A to any college that rejected them (an impossible college), considering an
assignment that sends o — A implies at least one [3; is assigned to a less desirable college. If
such an assignment is unstable, then A is impossible for . Thus, deferred acceptance only
rejects impossible colleges.

Key Idea: One can reject offers without being forced to accept proposals immediately.
In environments with limited capacity, students have no incentive to lie—they strategically
distribute their applications rather than applying solely to their top choice.

6.2 Roth (1982): The Economics of Matching: Stability & Incentives

Gale and Shapley did not address incentives. Roth (1982) extends the literature by considering
both stability and incentive properties of matching procedures. The following theorems are
central:

Theorem 1 There exists a procedure that delivers a stable outcome (as demonstrated by Gale
& Shapley).

Theorem 2 There exists a stable outcome that is efficient (i.e., optimal) from the perspective
of one side of the market.

Theorem 3 (Negative Result) No stable matching procedure exists in general for which
truthful revelation of preferences is a dominant strategy for all agents.

Theorem 4 There exist efficient matching procedures for which truth-telling is a dominant
strategy for all agents.

Theorem 5 For any matching procedure that yields the optimal, stable outcome (e.g., deferred
acceptance) for one side, truthful revelation is a dominant strategy for that side. In other words,
there is no incentive for, say, men to lie; furthermore, the other side (women) has no incentive
to misrepresent their top choice.

Notation: Men and Women

Let
M ={mi,mg,...,mp} and W = {w,wa,...,w,}

denote the sets of men and women, respectively. Each man m; has a strict, complete, and
transitive preference relation P(m;) over W. The notation

wi P(m;)w;

means that man m; prefers woman wy, to wj.
An outcome (or matching) is given by

X :M—)W, X:{(ml,X(ml)),(mg,X(mQ)),...},

where X (m;) = w; implies that man m; is matched with woman w;. Because the matching is
one-to-one, it is invertible, so that
X~ (wy) = m;
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denotes the man matched with w;.
The matching X is stable if there is no pair (my, w;) such that:

wiP(my) X (my) and mkP(wl)X_l (wy).

Proof Sketch of Theorem 3

The proof shows that there exists a matching problem for which no stable procedure ensures
truthful revelation for all agents. Consider the following:

o Let M = {my,me,msg} and W = {wy, we, ws}.

e Let h be an arbitrary stable procedure such that for any preference profile P, the outcome
h(P) is stable (i.e., h(P) € C(P), where C(P) is the set of all stable outcomes). Suppose
h(P) equals one of two outcomes, say X or Y, with men preferring one and women
preferring the other.

o Now, consider a modified profile P’ where w; changes her ranking from (1, 3,2) to (1,2, 3).
In this case, the unique stable outcome is Y, so h(P') =Y.

o Next, consider another modified profile P”, where m; changes his ranking from (2, 1,3) to
(2,3,1), yielding h(P") = X.

If h(P) = X, then wy has an incentive to report P’; if h(P) =Y, then m; has an incentive to
misreport as in P”. Thus, there exists an incentive to misrepresent preferences.

Proof Sketch of Theorem 4

Consider a draft mechanism:

o Each man picks his top available partner (i.e., the partner who has not yet been selected
by any previous man).

e Since men select their best available option, they cannot do better by lying. However,
because women’s preferences are not considered in this mechanism, the outcome is not
stable.

This demonstrates that stability and efficiency on one side can be achieved. Theorem 5 extends
this result by showing that in mechanisms yielding the optimal stable outcome for one side,
truth-telling is a dominant strategy for that side.

Proof Sketch of Theorem 5

Consider the matching procedure introduced by Gale and Shapley:

o It suffices to show that for any agent m;, for any deviation in reported preferences (i.e., any
misrepresentation), the outcome Y = g(P’) is not preferred over the outcome X = g(P),
where P is the true preference profile.

o Step 1: It is sufficient to consider simple misrepresentations (i.e., deviations affecting only
the top preference).

e Step 2: Show that no man is worse off if any man makes a simple misrepresentation.

e Step 3: Prove that no simple misrepresentation is successful; that is, any deviation results
in the same matching.
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A key lemma (Lemma 1) is used: If Y = g(P’) and Z = g(P”), then for any man m;,
Z(m;) =Y (m;). The proof relies on the stability and optimality of the matching and concludes
that any misrepresentation does not yield a better outcome.

Big Picture: In matching theory, payoffs and preferences are fixed, and stability is deter-
mined by the “double coincidence of wants” in decentralized markets. However, centralized
mechanisms and transferable utility (where one partner can compensate the other) allow for
social planner optimization of total surplus.

6.3 Becker (1973)

Becker (1973) argues that analyzing marriage through the lens of transferable utility is insightful.
Define:

m __
ij =
fo—
ij

U utility that man ¢ derives from matching with j,

U utility that woman j derives from matching with i.

The focus is on the joint surplus:
f

.. — m
Zij = Ul] + U”

Question: Given z;;, what are the stable assignments?

Answer: A stable assignment maximizes the total output (i.e., total surplus).
Define the adjusted surplus as:

Zij = Zi0 — 205>

where Zp; is the utility for woman j when single, and Z; is the utility for man ¢ when single.

Planner’s Problem

The problem is formulated as:

M N
max Z Z aijéij

.
Y i=0 j=0

N
s.t. Zaij =1 \V/i,
J=0

M
Z(Iij =1 VJ
=0

Rewriting the problem (noting that ag; = 1 — Zf\il a;j), we have:
M N
max ) aij%;
Y i=1j=1
N
S.t. Zaij <1 Vz,
j=1
M
Zaij <1 V]
i=1

This formulation is a linear program with aj; € {0,1}. Note that maximizing utility and
minimizing expenditure yield the same solution.
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Dual Problem
The dual problem addresses how to divide the surplus:

M N

= J

s.t. u; + vy > Zij Vi, j.
Here, the dual variables u} and v} (with u; > 0 and v; > 0) represent the shadow prices of the
respective constraints. In effect, u; is the share of the surplus that man ¢ obtains in a stable
match, while v; is the share that woman j obtains.
A match occurs if and only if

Ui + v = Zij,

which implies that any alternative match would cost more and leave the agents worse off.

Consequently, u; and v; serve as the reservation utilities for men and women, respectively,
leading naturally into models that incorporate search and expectations.

6.4 Maskin & Diamond (1979)

Maskin and Diamond (1979) address the information problem inherent in matching, particularly
when agents face a decision about whether to continue searching for better partners. In their
paper, An Equilibrium Analysis of Search & Breach of Contract — Part 1, they consider the
following:

e Searching for potential partners is both costly and random.
o Negotiations occur instantaneously.

e A contract is an agreement to undertake a project with certain returns, which may be
either good or bad.

e Thus, an agent can find themselves in a good partnership, a bad partnership, or remain
single.

Key Observation: Agents can continue searching after partnering, and contracts can be
breached. However, breach is costly and requires offering damages that are compensatory (and
possibly liquidated, though the focus here is on compensatory damages).

Search Technologies: The analysis distinguishes between linear and quadratic search tech-
nologies.

Model Setup
o There are two types of agents. A partnership requires one agent of each type.

o The value of a good match is X (with X > X’), while a bad match has value X’ (with
X' >0).

e New partners are found only through a search process that incurs a cost C.
e The meeting process follows a Poisson process.

e In the quadratic search model, the parameter a represents the probability that two searchers
meet per unit time.
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Conditional on a meeting, let Pr(Bad Match | Meeting) = P. The inflow of agents is given
by a-b (with a higher b indicating a higher inflow). The population is segmented into:

e M: agents not in a match,
e N: agents in bad matches,
e Good matches, once formed, are stable and the agents do not leave.

When two M-type agents meet and form a good match, they split the surplus 2X equally.
When two M-type agents form a bad match, they split 2X’ equally or compensate the other
party if a breach occurs. The compensation is given by:

D =Vy — Vy,

where V) is the expected value of being an M-type agent and Vi is that of an N-type agent
(with Vay > V). Thus, two M-type agents always match (they always obtain a positive payoff).
Consider:

1. When two N-type agents meet in a good match, breach occurs if
2X —2Vy >2D.
The surplus from a new match is:
S=2X -2V —2D =2X — 4V + 2V},

which is positive if the above condition holds.

2. When one M-type and one N-type agent meet in a good match, breach leads to a surplus:
2X -V —-Vy —D >0,

which simplifies to 2X — 2V > 0 if search is costly, and then the surplus is split.
Positional Value:
e For an M-type agent: Vi + X — V.
e For an N-type agent: Vy + X — Vy = X.

Since an N-type agent can have an M-type partner cover half the damages, matching with an
M-type is more advantageous, implying no damages and a preference for an M-type partner.

Steady-State Analysis

The steady-state population dynamics for M and N are analyzed under three cases:
Case A: N-types are searching and breach if a good match occurs, while M-types are also searching.
Case B: N-types are searching, breach only if a good match occurs, and M-types are searching.
Case C: Only M-types are searching.
Case C: Let h,, denote the number of searching M-types. The dynamics are:
hm = ab — ah?,.
At steady state, A, = 0, so

h: = b.

34



Case B: The dynamics for h,, remain:
o = ab — ah2,.
For hy (searching N-types),
hy = ahpmP — 2 (ahpmhy (1 — P)).

At steady state, we have h,, = v/b and

P
hy = m\/&

Case A: The dynamics are given by:
bt = ab+ ah%,(1 — P) — ah2,,

iy = aPh2, — 2ahyhy (1 — P) = 2a(1 — P)h.

h, (1—P> 1+P
L — - 1_|_ - ,
Wiy P 1-P

hA ~vb and hA +h4d = ——.
m Vb an m T —p

In steady state, the ratio is:

with

The derivation uses the fact that
hm + hy = ab — a(1 — P)(hy, + hy)?.

It is shown that a steady state corresponding to Case B cannot exist. Particular details matter,
as general assumptions are hard to justify given the model’s sensitivity.

6.5 Weitzman (1979) — Optimal Search for Best Alternative
Segway from Search to Learning

Weitzman (1979) addresses a problem in which a decision maker faces several opportunities with
unknown rewards:

e The rewards of opportunities are uncertain and can be resolved at a cost over time.
e Searching is sequential.
e The decision maker may stop searching at any time and choose an opportunity.

The core question is: What is the optimal search strategy?
Example: Consider two projects, A and B, with a discount rate of 10%. The following table
summarizes their rewards and costs:

A B C (reservation)
Reward | 100 (1/2), 55 (1/2) | 240 (1/5), 0 (4/5) 0
Cost 15 20 0
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The research durations are 1, 2, and 0, respectively. The expected value (E.V.) computations
are as follows:

1 1 1
E.V.if I research A: = —15+ <11) [2(100) + 2(55)] = 55.5, (98)
. 1\*[1 4
E.V.if I research B: = —20+ 11 5(240) + 5(0) =19.7. (99)

Suppose project A is researched first and yields a payoff of 55. Should project B be developed
next?

20+ <111)2 E@m) + §(55>} — 56 > 55. (100)

Thus, it is optimal to develop project B after A.
The overall expected value if A is researched first is:

, 1|1 1 1\?1 4
E.V. if I research A first: = —15 + (11> [2(100) +5 <—20 + (11) [5(240) + 5(55)})1 = 55.9.

(101)

Conversely, if B is researched first:

20+ (111>2 [;(240) + % (—15 + (111) [;(100) + ;(55)m —563.  (102)

Thus, it is optimal to research project B first, indicating that one should research opportunities
with high upside early.
Pandora’s Problem: n Closed Boxes

Consider n boxes, where each box ¢ contains a reward X; ~ Fj(x;) (the boxes are independent).
Opening box i costs C;, and the reward is revealed after a lag of ¢;. Let Xy denote an outside
option available with certainty, with a discount rate r.

Dynamic Programming Formulation: Let the collection of boxes be denoted by
Z=A1,2,...,n},

and partition Z into:

e S: the set of unopened boxes,

e S: the set of opened boxes.
Define

Yy = max Xi’
€S

which is the best reward observed so far. The state of the system is (S, y), and let ¥(S, %) denote

the expected discounted value of being in this state and following the optimal policy. Then, the
Bellman equation is

W(5.y) = max {ymax {~Ci + ; [ WS i} maxty, X a0}
with the boundary condition ¥((), z) = .
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Optimal Strategy and Reservation Prices

Intuition: In an optimal strategy, the marginal benefit of opening a box equals its marginal
cost. Suppose there are two boxes (one open and one closed). Opening a closed box i yields a
net benefit:

i+ | [ man@) + [ "o aF ().

where z; is the reward from the already opened box (not box ). Box i is indifferent between
being opened or left closed if

5= —Ci+ B [/_OO 2 dFy(z) + /OO i dﬂ(;c)] , (103)
C = B [/Oo(m ~ ) dFl-(a:i)} —(1-B)a (104)

The value z; that solves this equation is the reservation price for box i. A box is considered
worth opening if its sample reward exceeds this reservation price.

Pandora’s Rule:
e Selection: If a box is to be opened, choose the one with the highest reservation value.

e Stop: Stop searching when the best sample reward exceeds the reservation value of every
unopened box.

Example 1: Suppose box ¢ yields success with probability p; and a reward R;, and failure
(reward 0) with probability 1 — p;, with § =1 and p;R; — C; > 0. Then,
R —C.
CZ‘ = (Ri — Zi)pi —— 2 = %
(3

For two projects with the same expected value, if one has a lower probability of success, it is
optimal to research the one with the lower probability.

Example 2: Consider a mine ¢ that contains G; units of gold. A digging machine has a
probability ¢; of breaking after ¢ units of time. Let Xg = 0, C; = «, and assume the benefit is
—G; (with X; > 0). Then, with 8; = 1 — ¢;, if the reservation price z; > 0,

-Gi=(—q)s — z= fjl

Thus, the optimal strategy is to start with the mine that gives the most gold per unit probability
of breakdown.

Proofs

(1) Existence and Uniqueness of Reservation Prices: Define
o)
Hi2) =B [ (@i~ 2)dFy(a) - (1= 6=
z

Since H;(z) is continuous and monotonic, with H;(co) = oo and H;(—o0) = —oo (when §; < 1),
it follows that for any C; > 0, there exists a unique z; satisfying

(2) Induction on the Number of Closed Boxes: Assume Pandora’s rule is optimal
when there are m closed boxes, given the current best reward y. For m + 1 closed boxes, let box
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j be the one with the highest reservation price among S (i.e., z; = max;.g z;). If y > z;, it is
optimal to stop; if y < z;, then one must show that opening box j is optimal rather than any
other box k with z; < z;. Through an inductive argument—comparing the expected values of
the alternative strategies and employing auxiliary quantities such as

m=Pr(X; > z), w=FEX;|X;>z, (105)
XNi=Pr(z, < X; <z), vi=FEX;|z<X;<zl, (106)
0; = Elmax(X;,y) | zn < X; < zj], (107)
wi =Pr(z < X < z), wi=FE[X;|z <X; <z, (108)

one shows that the strategy of opening the box with the highest reservation price is optimal. By
proving that the marginal benefit of opening any box equals its cost at the reservation price, the
induction is complete.

Takeaway: Despite the complexity of general search models, Pandora’s rule provides a
precise prescription for the optimal search strategy regardless of specific details. The proofs
illustrate how rules governing search can be rigorously converted into mathematical form,
enabling clear interpretation and understanding.

6.6 Banerjee (1992)

Model Setup. Consider a population of n identical and risk-neutral agents, where assets are
distributed over the interval [0, 1]. For the i'"" asset, denote the asset by a(i) with an associated
return z(7). There exists a unique index i* such that

2(i*) =2 >0, and z(i £ 1) = 0.

All agents hold uniform priors regarding the location of ¢*; that is, initially no agent possesses
any additional information. Agents receive signals about the value of i*: an agent receives a
signal denoted by i’ with probability . Conditional on receiving a signal, the signal is correct
(i.e., equals i*) with probability 3, and incorrect with probability 1 — 5. When the signal is
false, i’ is drawn from the uniform distribution on [0,1] (uninformative). Investment occurs
sequentially: the first agent is chosen at random to invest; the second agent is chosen at random,
observes the first agent’s choice (but not the underlying signal), and then invests; and so on.
In general, the n'" agent observes the choices of the previous n — 1 agents before making their
investment decision.

Tie—Breaking Rules. The following rules are imposed to break indifferences:

(A) When an agent receives no signal and observes that everybody chose i = 0, the agent
chooses ¢ = 0.

(A) When an agent is indifferent between following their own signal and the observed choices
of others, the agent follows their own signal.

(A) When indifferent between two or more previous decisions, the agent selects the higher one.

Equilibrium Behavior

First Agent.
o If the first agent receives a signal, then a; = 7} (i.e., the action equals the signal).

o If no signal is received, then a; = 0.
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Second Agent.
o If the second agent receives a signal:
— When a; = 0, then ay = .
— When a; # 0, then ay = .
o If no signal is received:

— If a1 = 0, then as = 0, so that as = ay.
— If a1 # 0, then ag = .

Third Agent. The decision of the third agent depends on the observed actions of the first
two agents. Four cases arise:

(1) When a; = ag = 0:
o With no signal, set az = 0.
o With a signal, set az = ij.
(2) When a; = 0 but ag # 0:
o With no signal, choose ag = as.
o With a signal, choose ag = ij.
(3) When a; # 0 and ag = 0:
o With no signal, set as = a; (using tie-breaking rule C).
o With a signal, set a3 = ij.
(4) When a; # 0 and ag # 0:

« With no signal, set a3 = max{a;,as}.

o With a signal, if a1 # ag, then ag = i4; if a1 = ag, then a3 = a1 = as.

Copying Behavior. A calculation is provided for the conditional probabilities:

a’BP(1 - B) +a?B(1 - B)(1 - a)
P(H) ’

apf(l-p)(1 —a)
P(H) '

Since (I) is greater than (II), agents have an incentive to “copy” the previous actions. In
equilibrium, whenever two agents choose the same action, subsequent agents will follow that
action; thus, private information is not conveyed further through actions. In other words, while
actions converge via communication, private beliefs do not.

(I) P(*=a =az2 a1 =ay, iy) =

(I) P@* =15 | a1 = ag, i5) =

Implications.

This model helps explain phenomena such as fads and political herding, where there is a huge
value attached to being the first person in line. It also illustrates how communication can break
the herd, thereby altering the flow of social learning. Even if waiting is costly or agents can
change positions, the general intuition of the model remains robust.
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6.7 Normal Learning Model: Observational Learning

Overview. Learning is here conceptualized as the process of encountering information and
applying it. Two approaches to statistical learning are distinguished:

Classical /Frequentist Approach: e The parameter 6 is considered an unknown but fixed
quantity.
o One observes a random sample (i.e., iid observations X1, Xo, ..., X,, drawn from a

population characterized by a probability density function indexed by 8).

e Inferences about 6 are then drawn using methods such as maximum likelihood
estimation (MLE) or the method of moments (MoM).

Bayesian Approach:  The parameter 6 is treated as a random variable with a distribution
representing our prior beliefs.

o The prior distribution, denoted by (), is subjective and specified before data are
observed.

o After observing a random sample, the prior is updated using Bayes’ law, and the
process can be repeated as new data become available.

Denote:
7(0) : prior distribution, f(X|#) : sampling distribution,

m(X) = /f(X|0)7r(6?) df : marginal distribution.

Bayes’ rule then yields the posterior:

F(X|60)7(6)

n01) = =5

6.8 Example: Normal Learning Model

Assume that )
X, N8, 0,
and that the prior for 0 is
0 ~ N(u, 7'2),
with 02, p, and 72 known. The joint probability density function of X and 6 is given by
1 X —6)? 1 0 — p)?
= ———exp —( 5 ) . exp —#
V2o /\/n 20%/n 27T 27

After combining exponents, one obtains an expression of the form

1 [(9 ~K(X)? | (X —p)? ] |

f(X10) - 7(0)

2 V2 2 +0%/n
which implies that the joint density can be viewed as the product of a normal density in 8 with
mean K (X) and variance V2, and a marginal normal density in X with mean p and variance
72 + 02 /n. Consequently, the posterior expectation is
A a%/n

= X
72 +02/n + T2 +02/nu’

E[0|X] = K(X)

where the weight on the sample mean X increases as the variance of the prior (i.e., 72) increases,
or as the sample variance o2 decreases. The posterior variance is

02 n T2
V(O|X)=V?= 652/1/1172

Thus, if the new information is imprecise, the posterior will rely more heavily on the prior.
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6.9 Jovanovic (1979) & Kane & Staiger (2005)

Application to Tenure Decisions. In these works the parameter u represents the true
effectiveness (or productivity) of a teacher. The model assumes:

e ur N(07 Ui)v
e For each period t, the observed performance is
}/t:,u—’_etv EtNN(O7O§)7

so that
Y | g~ N(p,02).

o Observations over t periods are used to decide on granting tenure.

The posterior expectation after observing Y7,...,Y; is given by

o2 ¢ _

FE Yi,....V:| = g Y = Y
1., Y Ua—i—ag/t t—l—og/oz ’

where the term m serves as a shrinkage factor, pulling the estimate toward the prior mean
el %

of zero. In practice, a cutoff C' is set: if Y > O, tenure is granted; if Y < C, tenure is denied. In

a real decision, tenure is granted if
v _  t+o%/o?
E(p|Y)>C, orequivalently Y > tﬂ/s ,

The probability of tenure given a cutoff C' is then

_ C" = itz
Pr(Tenure | C) =Pr(p>C|Y)=1-0| ——F—="—|.

2
s 2
/%0

If the cutoff is set too high, experienced individuals may be erroneously dismissed. The model
can be extended by incorporating an experience trend,

YVi=p+e+pt, withY|p~N(u+ Bt o?),

and by defining
Z = }/;f - ﬂta

so that the average Y is replaced by Z. This modification allows for determining an optimal
cutoff time that balances early learning (which may lock in mediocre individuals) against the
risk of losing top talent.

6.10 Crawford & Sobel (1982)

Communication and Strategic Information Transmission

Crawford and Sobel (1982) develop a model of cheap talk where communication (via advertisement
or signaling) is costless. In the model, an informed sender (S) cares about the action taken
by an uninformed receiver (R). The sender observes the true state of the world, s € S, and
sends a message m € M to the receiver, who then chooses an action a € A. The model becomes
particularly interesting when the sender and receiver have misaligned objectives.

The utility functions are specified as

U®(a(m), s) = —(a— (s +))?,
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where b represents the distortion in the sender’s objectives, and

U (a,s) = —(a — s)*.

Thus, while the sender knows the state, the receiver does not. For example, consider a simple
case with binary state space S = {0, 1}, message space M = {0, 1}, and action space A = {0,1},

with each state occurring with probability

1
3

The receiver’s decision problem is to choose

a(m) € argméxx{UR(a,O)p(S =0|m)+U"a,1)p(S=1| m)}

Simultaneously, the sender chooses a message according to

where g(m | s) is the probability that the sender sends message m when the state is s. Bayes

q(m|s) € arg max US(a(m),s) Vs,

)

rule then provides the posterior

am|9)p(s)
Sq(m|)+ Salm [1-5)

p(s | m) =

Types of Perfect Bayesian Equilibrium (PBE)

Three types of PBE are considered:

(a)

Fully Separating Equilibrium: The message fully reveals the sender’s private informa-
tion. A candidate strategy is

1 ifm=
q(m|s) = nm .S’ with a(m) =m Vm.
0 otherwise,

This equilibrium exists when b is sufficiently small.

Partially Separating Equilibrium: Some messages perfectly reveal the state while
others do not. For instance, one might have

q(0]0)=1, ¢(1]0)=0, a(0)=0, a(l)=2b,

and
q(0]1)=0, ¢(1]1)=1.

In this equilibrium, even when the state is 0, the sender might have an incentive to induce
the receiver to choose 1 in order to obtain a higher payoff.

Pooling (Babbling) Equilibrium: No information is conveyed by the message. A
typical example is

1
gim|s)=1 Vs, witha(l)= 3 a(0) =0,
or even a randomized strategy such as

1 1
qg(m|s) = 3 Vm,s, yielding a(m) = B Vm.

When b is very small, the babbling equilibrium always exists. Fully separating equilibria
exist only if b is small enough (specifically, when b < %), whereas partially separating equilibria
require b to be not too small (e.g., b > % may be needed to sustain non—trivial messages). In
cases where b is too large, no equilibrium in which the sender truthfully reveals any information
exists because the sender always prefers to push for the receiver to choose action 1.
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Extension to a Continuous State Space

Now consider a continuous state space S = [0, 1], with action space A = [0, 1] and a finite
message space M. Assume the prior distribution over states is uniform, i.e., S ~ U][0, 1]. Bayes’
rule then gives
p(s | m) = g(m|s)p(s) _  q(m]s)
Jo atm | Op(t)dt — [5 q(m | t)dt

Several observations can be made:

1. An always babbling equilibrium exists: for example, if g(m | s) = ﬁ for all s, then the
1

receiver’s optimal action is a(m) = 35 for every message.
2. A fully separating equilibrium does not exist in this setting, since the receiver cannot invert
the sender’s message function.

3. There exists a state t € S such that U®(a,t) is the same for two different actions a and a/,
i.e., t is the sender’s bliss point.

4. One can define a function a®(t) taking values in (a,a’) such that the difference a/(t) — a
equals a’ — a®(t), reflecting a symmetry condition.

5. No state t' greater than ¢ induces the lower action a, and no state t' less than ¢ induces
the higher action a’.

These observations suggest the existence of a cutoff in the state space.

Candidate Equilibrium with Two Messages. Suppose the sender’s message space is
{0,1}, and these induce two actions a1 < ag such that a(0) = a; and a(1) = ag. Then, under
equilibrium, there exists a cutoff point ¢ such that:

If s <t, send m = 0; if s >t, send m = 1.

Bayes’ rule implies that

1 L=t 1+t
E(S [m=0)=t, E(5|m:1):t+?:%,

The receiver chooses actions to maximize expected utility:
1
a(m) € argmgx/ UR(a, $)p(S | m)dS,
0

leading to
1+t

2

Equilibrium requires indifference for the sender between the two messages, which imposes

a(())zé and a(l)

t 1—1¢ 1
S4b=—""b = t=-—2.
R 2 2

Thus, the equilibrium exists provided that ¢ > 0, i.e., if b < %.
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Generalization. In a candidate equilibrium with three cutoffs (0,¢1,¢2,1), the following
condition must hold for all interior cutoffs:

1 1
ti+b— 5(15@‘—1 +t) = §<ti +tit1) — (ti +b),

4b = tiy1 — 2t; +t;_1,

by = i ke 2b.
2
By setting ¢y = 1, one obtains a bound on the maximum number of partitions, and hence on
the granularity of information transmission. The key insight is that while full separation is
impossible when the sender has a strong incentive to misreport, partial pooling equilibria can
arise in which some information is credibly transmitted. In such equilibria, extreme messages
may be sent to reveal the sender’s type to some extent, even though complete revelation is
precluded by incentive constraints.

Takeaway. Crawford and Sobel demonstrate that even when communication is costless (cheap
talk), the possibility of partially revealing information exists. Although pooling equilibria may
lead to no information transmission, under certain conditions the sender can credibly convey
some information. This result has broad implications for understanding strategic communication
in environments where the sender and receiver have misaligned objectives.
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