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1 Introduction

These notes present key concepts from a Ph.D. course in Applied Econometrics. Topics covered
include the selection problem, regression discontinuity design, controlling for confounding
variables, fixed-effect regressions, difference-in-differences and instrumental variables.

2 OLS Review

2.1 Data Forms

Economic data can be collected and organized in several structural forms, each with distinct
characteristics and analytical implications. Cross-sectional data consists of observations across
different units (individuals, firms, countries) at a single point in time, enabling comparisons
between different entities. Time series data tracks the same variable(s) for a single unit over
multiple time periods, facilitating the analysis of temporal patterns and dynamics. Panel data
(or longitudinal data) combines both dimensions, following multiple units over time, thereby
capturing both cross-sectional heterogeneity and temporal evolution.

2.2 Data Collection Methods

The quality and reliability of econometric analysis fundamentally depend on the methods used
to collect the underlying data. Experimental data arises from controlled experiments where
researchers randomly assign subjects to treatment and control groups, providing the strongest
basis for causal inference. Observational data, more common in economics, is collected without
researcher intervention in the assignment process, requiring more sophisticated econometric
techniques to establish causality.

Additionally, data may be classified as primary (collected directly by the researcher for
the specific analysis) or secondary (obtained from external sources that collected the data for
other purposes). While primary data collection offers greater control over the research design,
secondary data often provides larger samples and broader coverage.

2.3 Simple Regression Model

The foundational linear regression model is expressed as:
Y = 61 + BQX —+ u.

This equation represents the relationship between a dependent variable Y and an independent
variable X, where 1 is the intercept parameter, fs is the slope parameter indicating the effect
of a one-unit change in X on Y, and w is the error term capturing all other factors affecting Y
not explicitly included in the model.

The Ordinary Least Squares (OLS) estimators for the parameters are derived by minimizing
the sum of squared residuals, yielding:

3 ~ Cov(X,Y)
Q,OLS - Var(X) 9

BioLs = E[Y] — B2 01s E[X].

These formulas highlight that 33 ors represents the covariation between X and Y scaled
by the variance of X, while 51 ors ensures that the regression line passes through the point of
means.



2.4 Assumptions

The validity of OLS estimation rests on several critical assumptions:

1. Linear in Parameters: The dependent variable must be a linear function of the parameters
(though not necessarily of the explanatory variables).

2. Identifiability: The matrix of explanatory variables X must have full rank, meaning no
perfect multicollinearity exists among the regressors. This ensures the OLS estimator is uniquely
defined.

3. Orthogonality (or exogeneity): The error term must be uncorrelated with the explanatory
variables, formally expressed as E[u | X] = 0. This assumption is crucial for the consistency of
OLS estimates and represents the absence of omitted variable bias, simultaneity, and measurement
error.

4. Sphericality: The error terms must have constant variance (homoskedasticity) and
be uncorrelated with each other (no serial correlation). Formally, Var(u | X) = o2 and
Cov(us,uj | X) =0 for i # j.

5. Normality: The error term follows a normal distribution conditional on X, i.e., u ~
N(0,02). While not necessary for consistency, this assumption enables exact inference in finite
samples.

2.5 Violations

Violations of the orthogonality assumption are particularly problematic as they render OLS
estimates inconsistent, meaning they do not converge to the true parameter values even with
infinite sample sizes. These violations generally arise from three sources:

Omitted Variables: When relevant explanatory variables are excluded from the model but are
correlated with included variables, the estimated coefficients absorb the effects of these omitted
factors, leading to biased and inconsistent estimates.

Simultaneity: When causality runs in both directions between the dependent and one or
more independent variables, creating a feedback loop that violates the exogeneity assumption.

Measurement Error: When variables (particularly explanatory variables) are measured with
error, introducing a correlation between the observed values and the error term.

Violations of the sphericality assumption, while not affecting consistency, impact the efficiency
of OLS estimates and invalidate conventional inference procedures:

Heteroskedasticity: When the variance of the error term varies across observations, often
related to the values of the explanatory variables.

Serial Correlation: When error terms are correlated across observations, particularly common
in time series data.

Both violations necessitate adjustments to standard errors for valid inference.

2.6 Hypothesis Testing

Statistical hypothesis testing plays a central role in econometric inference, allowing researchers
to evaluate the empirical validity of theoretical predictions. Two types of errors can occur in
this process:

Type I Error: Rejecting a true null hypothesis, representing a false positive. The probability
of committing this error is the significance level « of the test.

Type II Error: Failing to reject a false null hypothesis, representing a false negative. The
probability of avoiding this error is the power of the test.

For testing hypotheses about individual parameters, such as Hy : 8; = ¢ versus H, : 5; # c,
the t-test employs the following test statistic:

Bi—c¢

"= SEG)




Under the null hypothesis and assuming the model assumptions hold, this statistic follows a
t-distribution with (n — k) degrees of freedom, where n is the sample size and k is the number
of parameters estimated.

3 The Selection Problem & Random Assignment

3.1 Effect of X on Y

A primary objective in applied econometrics is to identify the causal effect of a variable X (often
a treatment or policy) on an outcome Y. This task is complicated by the fact that individuals
or units with different values of X may also differ systematically in other characteristics that
affect Y, making it difficult to isolate the pure effect of X.

3.2 SUTVA

The Stable Unit Treatment Value Assumption (SUTVA) forms a foundational premise for causal
inference. It encompasses two critical conditions:

First, the potential outcome for any unit must be independent of the treatment status of
other units, ruling out spillover or interference effects. For example, when analyzing the effect of
a job training program, the employment prospects of a trained individual should not depend on
whether other individuals received training.

Second, there should be no different versions of the treatment that would lead to different
potential outcomes. All treated units receive the same treatment, and all control units receive
the same (or no) treatment.

SUTVA dramatically simplifies causal analysis by reducing the number of potential outcomes
that must be considered. Without it, each unit would have 2V potential outcomes (considering
all possible combinations of treatment assignments to the N units), making analysis intractable.
With SUTVA, each unit has only two potential outcomes: one under treatment and one under
control.

3.3 The Selection Problem

The fundamental challenge in causal inference is that for each unit, we observe only one of the
potential outcomes—either the outcome under treatment or the outcome under control—not
both. This creates the selection problem: units that receive a treatment may systematically
differ from those that do not.

The observed difference in outcomes between treated and untreated groups can be expressed
as:

ElY; | Di =1] = E[Y; | D; = 0] = (E[Yi(1) | Di = 1] = E[Y;(0) | D; = 1))
+ (E[Yi(0) | Di = 1] = E[Yi(0) | Di = 0])

The first term represents the average treatment effect on the treated (ATT), which is the
causal parameter of interest. The second term represents selection bias—the difference in
potential untreated outcomes between the treated and untreated groups.

With random assignment of treatment, this selection bias term disappears because:

E[Y;(0) | D; = 1] = E[Yi(0) | D; = 0] = E[Y;(0)]
Thus, under random assignment, the observed difference equals:
ElY; | D; =1] - E[Y; | D; = 0] = E[Yi(1)] — E[Y;(0)] = E[Y;(1) — Yi(0)]

This is the average treatment effect (ATE), which equals the ATT under random assignment.



3.4 Analytical Steps

Analyzing data from randomized experiments typically involves two key steps:

First, researchers verify the balance of covariates between treatment and control groups. If
treatment was truly randomly assigned, there should be no systematic differences in observable
characteristics between the two groups. Statistical tests or standardized differences can assess
this balance.

Second, researchers analyze the differences in outcomes between the treatment and control
groups. The simplest approach is to compare mean outcomes, but regression analysis can also
be employed to adjust for any remaining imbalances and improve precision.

3.5 Randomness Level

The level at which randomization occurs has important implications for analysis and interpreta-
tion. Treatment may be randomized at the individual level (each person independently assigned),
the cluster level (e.g., all individuals in a city assigned together), or higher levels (e.g., states).

The randomization level affects the appropriate statistical analysis, particularly the calculation
of standard errors. When treatment is assigned at a cluster level, standard errors must account for
within-cluster correlation of outcomes. The level also influences the interpretation of treatment
effects, as higher-level randomization may capture general equilibrium effects that individual-level
randomization might miss.

3.6 Natural Experiments & Imperfect Compliance

Natural experiments occur when treatment assignment approximates randomness due to natural
processes, policies, or administrative rules rather than researcher intervention. Lotteries, for
instance, provide a clear mechanism for random assignment, such as in studies of military draft
effects or school choice programs.

Imperfect compliance arises when not all units adhere to their assigned treatment status.
Let D; indicate the treatment offered (the assignment) and Z; indicate the treatment actually
received (the uptake). The compliance rate is defined as Pr(Z =1 | D = 1), the proportion of
those offered treatment who actually take it up. Non-random take-up can reintroduce selection
bias.

With D randomly assigned, the intent-to-treat (ITT) effect—the effect of being offered
treatment—can be estimated unbiasedly. The effect of actually receiving treatment (the treatment
effect on the treated, TT) can then be calculated as:

ITT

TT = : .
compliance rate

This adjustment is valid under the assumption that treatment assignment affects outcomes
only through actual treatment receipt (the exclusion restriction).

In analyzing experiments with imperfect compliance, researchers should use data from all
study participants, regardless of their compliance status. Restricting analysis to compliers would
reintroduce selection bias.

3.7 Missing Data

Missing data presents challenges in experimental studies through two main mechanisms:
Attrition occurs when participants drop out of the study over time, potentially creating
differential loss between treatment and control groups. If attrition is related to treatment status
or potential outcomes, it can introduce bias.
Non-response refers to missing answers on specific questions in surveys or other data collection
instruments. Like attrition, differential non-response between groups can bias estimates.



Researchers employ various strategies to address missing data, including imputation methods,
bounds analysis, and sensitivity tests to assess the potential impact of missing data on conclusions.

3.8 Random Assignment Conditional on Covariates

In some studies, treatment is not unconditionally random but is randomly assigned within groups
defined by certain covariates. This design, known as stratified randomization or conditional
random assignment, ensures that the treatment is unrelated to potential outcomes within each
stratum:

Conditional random assignment is common when treatment is targeted to specific populations
(e.g., based on income thresholds) or when stratification is used to improve precision. Proper
analysis of such designs requires conditioning on the stratification variables.

3.9 Heterogeneity in Treatment Effects

Treatment effects often vary across subgroups of the population, a phenomenon known as
treatment effect heterogeneity. Some groups may experience larger impacts than others due to
differences in baseline characteristics, implementation quality, or complementarities with other
factors.

Researchers can explore heterogeneity by examining treatment effects separately for different
subgroups or by including interaction terms in regression models. For example, to compare
treatment effects between older and younger subjects:

Y = Bo+ 51D + B2(D - old) + Bsold + u,

Here, 31 represents the treatment effect for younger subjects, while 81 + 2 gives the effect
for older subjects. Similarly, with continuous variables like age:

Y = 5o+ 3D + Ba(D - age) + age + u,

Where (4 captures how the treatment effect changes with each year of age.

3.10 Quantile Regression

Quantile regression offers another approach to examining treatment effect heterogeneity by
estimating effects across different points in the outcome distribution rather than focusing solely
on the mean. It summarizes the conditional quantile function Q-(Y | X), where 7 represents
the quantile of interest (e.g., 0.25 for the first quartile, 0.5 for the median).

At the 50th percentile (7 = 0.5), quantile regression yields the median outcome as a function
of covariates, offering a robust alternative to mean regression when the outcome distribution
is skewed or contains outliers. By examining effects at multiple quantiles, researchers can
identify whether treatments have differential impacts across the outcome distribution, potentially
revealing important patterns not apparent from mean effects alone.

3.11 Treatment Effects in Experiments

In experiments with perfect compliance, the treatment effect is directly estimated as the difference
in outcomes between treatment and control groups. This represents the average treatment effect
(ATE) when assignment is random.

With imperfect compliance, researchers estimate the intent-to-treat (ITT) effect first—the
effect of being offered treatment regardless of uptake. The effect on those who actually receive



treatment (the treatment effect on the treated, TT) can then be calculated by scaling the ITT

by the compliance rate:
B ITT

compliance rate’

This adjustment, formally derived using instrumental variables methods, provides a consistent
estimate of the treatment effect for compliers under the assumption that treatment assignment
affects outcomes only through treatment receipt.

3.12 Randomization Inference

Randomization inference offers a powerful approach to hypothesis testing in randomized experi-
ments that does not rely on large-sample approximations or distributional assumptions. The
method leverages the known randomization process to construct the exact distribution of test
statistics under the null hypothesis.

For example, with 8 individuals and 4 treated, there are (Z) = 70 possible treatment
assignments. By computing the test statistic (e.g., the difference in means between treated and
control groups) for each possible assignment and determining where the observed statistic falls
in this distribution, exact p-values can be calculated.

This approach is particularly valuable for small samples where asymptotic approximations
may be unreliable and when treatment is assigned at the cluster level with few clusters.

3.13 Cost Issues

Randomized controlled trials (RCTs), while methodologically rigorous, entail substantial costs
that must be considered in research planning. These include:

1. Direct financial costs of implementation, including personnel, equipment, and participant
compensation. 2. Administrative burdens of obtaining Institutional Review Board (IRB)
approval and adhering to ethical guidelines. 3. Opportunity costs when more cost-effective
methods might address the research question adequately.

The high costs of RCTs may constrain sample sizes, limiting statistical power, or restrict the
complexity of interventions that can be tested.

3.14 Issues of Power

Statistical power—the probability of detecting a true effect when it exists—is a critical consid-
eration in experimental design. Underpowered studies may fail to identify meaningful effects,
leading to false negatives and publication bias when only statistically significant results are
reported.

Power depends on several factors, including: 1. Sample size—larger samples provide greater
power 2. Effect size—larger effects are easier to detect 3. Outcome variance—lower variance
increases power 4. Significance level—less stringent thresholds increase power but also increase
the risk of false positives

Power calculations should be conducted during study design to determine the appropriate
sample size for detecting effects of interest with reasonable probability.

3.15 Internal Validity

Internal validity refers to the extent to which a study’s results represent a causal relationship
between treatment and outcome within the study population. Several threats to internal validity
exist even in randomized experiments:

Spillovers occur when treatment of one unit affects the outcomes of other units, violating
the SUTVA assumption. For example, an educational intervention for some students might
indirectly benefit their untreated peers through knowledge sharing.



Non-response and attrition can create differential missing data patterns between treatment
and control groups, potentially biasing results if not properly addressed.

Researchers should compare characteristics of dropouts versus stayers to assess whether
attrition is related to treatment status or potential outcomes. Bounding techniques, such as Lee
bounds described below, can quantify the potential impact of selective attrition on estimates.

3.16 Lee Bounds

Lee bounds provide a method for addressing selective attrition in experiments by calculating
upper and lower bounds on treatment effects under worst-case scenarios about the missing data.
The approach involves the following steps:

1. Determine which group (treatment or control) has higher attrition. 2. For the group with
lower attrition, trim the sample by removing observations with the highest (for upper bound) or
lowest (for lower bound) outcomes. 3. Trim until the proportion of observed outcomes is equal
across groups. 4. Calculate treatment effects using these trimmed samples to obtain bounds.

This method makes minimal assumptions about the missing data process and provides a
range within which the true treatment effect must lie, assuming monotonicity in the relationship
between treatment and observation of outcomes.

3.17 External Validity

External validity concerns the generalizability of study findings beyond the specific context and
population in which the research was conducted. Several factors may limit the external validity
of RCTs:

Placebo effects occur when participants respond to the mere fact of being treated rather
than to the treatment itself, potentially overstating treatment effects in experimental settings
compared to real-world implementation.

John Henry effects arise when control group participants exert extra effort to compensate for
not receiving the treatment, potentially understating treatment effects.

General equilibrium effects emerge when treatments are scaled up, creating feedback mecha-
nisms and spillovers not captured in small-scale experiments.

Hawthorne effects occur when participants modify their behavior simply because they are
being observed, potentially creating artificial responses not representative of natural settings.

Researchers can enhance external validity by conducting experiments in diverse settings,
using representative samples, and complementing experiments with observational studies that
examine similar questions in natural contexts.

4 Regression Discontinuity

4.1 Overview

Regression Discontinuity Design (RDD) represents a powerful quasi-experimental method for
estimating causal effects when true experimental data is unavailable. The central question
addressed by RDD remains consistent with broader causal inference goals: What is the effect
of a treatment D on an outcome Y? RDD exploits situations where treatment assignment is
determined by a continuous variable crossing a known threshold, creating a discontinuity in the
probability of treatment that approximates local random assignment.

4.2 Basic Concept

The foundational premise of RDD is the existence of a running (or forcing) variable Xy that
exhibits a smooth relationship with the outcome Y but a discontinuous relationship with the



treatment assignment D. This scenario frequently arises in policy settings where eligibility for a
program or intervention is determined by a clear cutoff value ¢ on some continuous measure.

The crucial insight of RDD is that individuals just above and below this cutoff are likely to
be similar in all relevant characteristics except for their treatment status. As one approaches the
cutoff from either direction, the assignment of treatment becomes increasingly similar to random
assignment, creating what can be conceptualized as a local randomized experiment centered at
the cutoff.

This local randomization occurs because, while individuals may have some control over their
value of X, they typically cannot precisely manipulate it around the threshold. Consequently,
whether an individual falls just above or just below the cutoff can be considered as good as
random for those very close to the threshold.

4.3 Sharp vs. Fuzzy RDD

RDD methodologies are classified into two categories based on the nature of the discontinuity in
treatment probability at the threshold:
In a Sharp RDD, the treatment assignment changes deterministically at the cutoff, meaning:

Di = 1{Xi > C}

where 1{-} is an indicator function equal to 1 when the condition inside the brackets is true
and 0 otherwise. Examples include age-based eligibility for Medicare (at age 65) or scholarship
awards based on minimum test scores.
In a Fuzzy RDD, the treatment probability changes discontinuously at the cutoff but not

from 0 to 1. Instead:

lImPr(D =1|X =2z) # limPr(D = 1|X = x)

zlc ztc
This occurs when the cutoff rule is imperfectly followed, leading to partial compliance. For
instance, income-based program eligibility where some eligible individuals do not participate
(non-takeup) or some ineligible individuals receive exceptions (crossovers).

4.4 Bandwidth Selection

A critical methodological decision in RDD analysis is determining the bandwidth—the range
of data around the cutoff to include in the estimation. This selection involves a fundamental
tradeoft:

Narrower bandwidths increase the plausibility of the local randomization assumption but
reduce the sample size, decreasing precision.

Wider bandwidths increase the sample size and precision but may introduce bias if the
relationship between the running variable and the outcome is not properly modeled.

Modern approaches to bandwidth selection employ data-driven methods that minimize the
mean squared error of the RDD estimator, such as those developed by Imbens and Kalyanaraman
(2012) and Calonico, Cattaneo, and Titiunik (2014).

4.5 Estimating Treatment Effects

4.5.1 Narrow Bandwidth Approach

The most transparent approach to RDD estimation uses a narrow bandwidth around the cutoff,
effectively treating the data as a randomized experiment within this window.

For a Sharp RDD, the treatment effect is estimated as the difference in mean outcomes just
above and below the cutoff:

Ay =lmEY | X =z] —limE[Y | X = z]
zlc e

8



For a Fuzzy RDD, the treatment effect is estimated by dividing the jump in outcomes by
the jump in treatment probability:

Effect of Don Y = &
Ap

where
Ap=lmFE[D | X =z] - limE[D | X = z]
zlc e

This ratio represents a Wald estimator and can be implemented through two-stage least
squares (2SLS) estimation.

4.5.2 Regression Approach: Narrow Bandwidth

With a sufficiently narrow bandwidth, RDD can be implemented through simple regression
models.
The structural equation of interest is:

Y, = Bo+ p1D; + ¢

For a Fuzzy RDD, this is estimated through instrumental variables, where the instrument is
the indicator for being above the cutoff.
The first stage captures how the cutoff affects treatment uptake:

Di =70 +71{X; > c} +u
The reduced form shows how the cutoff directly affects outcomes:
Yi=do+0H{X;>ct+v;

In a Sharp RDD, v; = 1 by definition, so #; = d;. In a Fuzzy RDD, 51 = 61 /71, representing
the treatment effect for compliers.

4.5.3 Regression Approach: Wider Bandwidth

With a wider bandwidth, it becomes necessary to control for the smooth effect of the running
variable on the outcome. This is achieved by including a function of the running variable in the
regression:

Yi=00o+B1D;i + f(Xi —¢c)+

The first stage becomes:

Di=a+ClH{X;>ct+7(Xi—c)+ ¢
And the reduced form:

Y; = o+ 01 H{X; > c} +n(X; —¢) + v

The function f(-) can take various forms, including linear, quadratic, or higher-order polyno-
mials, as well as more flexible specifications like splines or local polynomials.



4.5.4 Local Linear Specification

A particularly important specification allows the slope of the running variable to differ on each
side of the cutoff, capturing potential differences in the relationship between X and Y for treated
and untreated units:

Y;:,Bo—i-/@’lDi—l-h(Xi—C)—i-frl{Xi ZC}(XZ‘—C)—FUZ'
The corresponding first stage is:
DZ:CY-FC].{XZ ZC}+T(XZ—C)+91{XZ 26}(X7,—C)+€Z

This specification provides robustness against misspecification of the functional form, partic-
ularly when the slopes differ substantially across the threshold.

4.6 Additional Considerations

Several specialized techniques address challenges that may arise in RDD applications:

Donut RDD involves dropping observations very close to the cutoff if there is evidence of
manipulation or measurement error in this region. This creates a "donut hole" around the
threshold, using observations that are near but not immediately adjacent to the cutoff.

Endogeneity Checks are crucial to verify the validity of the RDD. These include testing
for: - Manipulation of the running variable (e.g., using McCrary’s density test) - Balance of
pre-treatment covariates around the cutoff - Discontinuities at placebo thresholds where no
treatment change occurs

Violations of these checks may indicate that the fundamental assumption of RDD—that
assignment near the cutoff approximates random assignment—does not hold.

4.7 External Validity

A significant limitation of RDD is that it estimates a local average treatment effect (LATE)
specifically for individuals near the cutoff. This effect may not generalize to individuals far from
the threshold, especially if treatment effects are heterogeneous.

For example, a scholarship based on a minimum test score may have different effects on
students who barely qualified compared to those who scored well above the threshold. Researchers
should carefully consider this limitation when interpreting and applying RDD results to broader
populations or policy contexts.

5 Controlling for Confounding Variables

5.1 Introduction

The fundamental question in causal analysis remains consistent: how does a treatment D affect
an outcome Y7 In the absence of experimental data, where treatment is randomly assigned,
researchers must employ various strategies to establish causal relationships using observational
data. The success of these approaches depends critically on the nature of the selection process
into treatment and the available data.

The econometric toolkit for addressing selection includes several major approaches: controlling
for confounding variables, fixed effects, difference-in-differences (DiD), instrumental variables
(IV), and regression discontinuity (RD). Each method addresses specific types of selection
processes and carries its own assumptions and limitations. This section focuses specifically on
controlling for confounding variables as a strategy for causal inference.
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5.2 Controlling for Confounding Variables

The challenge of causal inference in observational studies stems from the presence of confounding
variables—factors that affect both the treatment assignment and the outcome. These confounders
can be observable (measured in the data) or unobservable (unmeasured), and their influence
must be addressed to isolate the causal effect of the treatment.

A common temptation is to include a large number of control variables in a regression
— sometimes called a "kitchen sink regression"—in an attempt to account for all possible
confounders. However, this approach has several drawbacks: it can lead to overfitting, reduce
statistical power, make results difficult to interpret, and may introduce post-treatment bias if
some controls are themselves affected by the treatment.

Instead, a more principled approach begins by carefully investigating the treatment assignment
process. The nature of this process determines which identification strategy is most appropriate:

If treatment was randomly assigned, experimental methods can be applied directly. If
treatment was not randomly assigned, the key question becomes whether all variables affecting
both treatment and outcome are observable and available in the data.

When all confounders are observable, we have "selection on observables" (also called un-
confoundedness or conditional independence). When some confounders remain unobservable,
we have "selection on unobservables," requiring more sophisticated techniques like fixed effects,
instrumental variables, or difference-in-differences.

5.3 Selection on Observables

Under selection on observables, once we condition on a set of covariates X, treatment assignment
becomes as good as random with respect to potential outcomes. Formally, this assumption is
expressed as:

Yi(0).Y:(1) L D; | X,

This means that, within groups defined by the same values of X, variation in treatment is
unrelated to potential outcomes. If this assumption holds and we correctly specify the functional
relationship between X and the outcome, we can estimate the causal effect of treatment using a
regression model:

Y, =a+B8D; +1I1X; + u;

Here, 3 represents the causal effect of the treatment. However, the success of this approach
hinges critically on two factors:

1. Having measured all relevant confounding variables 2. Correctly specifying the functional
form of their relationship with the outcome

In practice, researchers often augment the basic linear specification with additional terms to
capture more complex relationships, such as:

Y = a+ BD; + 11X, + (quadratic terms, cubic terms, interaction terms) + u;

While regression provides a parametric approach to controlling for confounders, match-
ing methods offer a non-parametric alternative that may be more robust to functional form
misspecification.

5.4 The Idea of Matching Estimators

Matching estimators directly compare outcomes between treated and untreated units that
have similar or identical values of confounding variables. This approach mimics the logic of a
randomized experiment by constructing appropriate comparison groups post hoc.

Consider a simple example with two binary confounders: sex (male/female) and education
level (high school dropout, high school graduate, college graduate). These variables create six
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distinct groups or "cells." Within each cell, the difference in outcomes between treated and
untreated units provides an estimate of the treatment effect for that specific subgroup:

EY|D=1,X=2]-E[Y |D=0,X =

Under the selection on observables assumption, this difference represents the conditional
average treatment effect for individuals with characteristics X = x. Importantly, within each
cell, the average treatment effect (ATE) equals the treatment effect on the treated (TT) because
conditioning on X removes selection bias.

To obtain overall treatment effects, these cell-specific effects are weighted and averaged:

For the average treatment effect (ATE) across the entire population:

EY: - Yo = Ex|EVi - Yo | X =a]| = Y E[Yi - Yo | X =] P(X = 1)

For the treatment effect on the treated (TT):

ElYi-Yy | D =1] = Bx|EVi~Yy | X =2,D=1]| = Y EYi-Y, | X =a] P(X =2 | D= 1)

The ATE and TT generally differ because the distribution of confounders may vary between
the treated population and the overall population. Additionally, practical challenges arise when
some cells contain only treated or only untreated units, creating a "common support" problem.

Fixed effects regression is sometimes used to implement matching estimators, particularly
with panel data, but it’s important to note that this does not directly estimate either ATE or
TT without additional assumptions or weighting.

5.5 Propensity Score Matching

As the number of confounding variables increases or when continuous confounders are present,
exact matching becomes increasingly difficult due to the "curse of dimensionality"—the rapid
proliferation of cells requiring matches. Propensity score matching offers a solution by reducing
the matching problem to a single dimension.

Rosenbaum and Rubin (1983) demonstrated a remarkable result: if matching on the full
set of covariates X is valid for removing selection bias, then matching on the probability of
treatment given X—the propensity score—is equally valid. Formally, the propensity score is
defined as:

p(z)=Pr(D=1| X =x)

This approach rests on two key assumptions:
1. Selection on observables (also called unconfoundedness, ignorability, or conditional
independence):
Yi(0),Y:(1) L Dy | X,

2. Overlap (or common support):
0<plz)<1

This ensures that for each value of X, there is a positive probability of both treatment and
non-treatment, making comparisons possible.

Two critical properties make propensity score matching effective:

1. Balancing property: Conditional on the propensity score, the distribution of covariates X
is the same in the treated and untreated groups. Mathematically, if X | D | p(X), then in a
regression of D on X and p(X), the coefficients on X should be statistically insignificant.
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2. Unconfoundedness property: If treatment assignment is unconfounded given X, then it is
also unconfounded given the propensity score:

Y;(0),Y;(1) L D; | p(X;)

Together, these properties allow researchers to estimate treatment effects by conditioning on
the propensity score rather than the potentially high-dimensional set of covariates.

5.6 Overview of the Propensity Score Matching Procedure

Implementing propensity score matching typically involves the following steps:

Step 1: Assess Feasibility

Determine whether the selection on observables assumption is plausible in the specific context.
This requires detailed knowledge of the treatment assignment process and the availability of data
on all relevant confounders. Additionally, verify that there is sufficient overlap in the propensity
score distribution between treated and untreated units.

Step 2: Estimate the Propensity Score

Select covariates X that affect both treatment assignment and outcomes, potentially including
functions of these variables (interactions, polynomials) to capture complex relationships. Estimate
the propensity score using logit or probit models:

Pr(D; =1|X;) = F(X;B)

where F'(-) is the logistic or normal CDF. The predicted values from this model, p(X;), serve as
estimates of the propensity score.

Step 3: Stratify the Sample and Check Balance

Divide the sample into strata (typically quintiles) based on the estimated propensity score.
Within each stratum, verify that the covariates are balanced between treated and untreated
units—there should be no statistically significant differences in the distributions of covariates
conditional on the propensity score. If imbalances persist, refine the propensity score model by
adding interactions or higher-order terms.

Step 4: Estimate Treatment Effects

Various methods can be used to estimate treatment effects based on the propensity score:

- Stratification: Compute the treatment effect within each propensity score stratum and take
a weighted average. - Nearest Neighbor Matching: Match each treated unit to the untreated
unit(s) with the closest propensity score. - Radius Matching: Match each treated unit to all
untreated units within a specified distance (caliper). - Kernel Matching: Match each treated
unit to all untreated units, with weights determined by the distance between their propensity
scores. - Inverse Probability Weighting: Weight observations by the inverse of their propensity
score (for untreated units) or the inverse of one minus their propensity score (for treated units).

The choice of method involves tradeoffs between bias and efficiency, with nearest neighbor
methods minimizing bias at the cost of higher variance, while kernel methods improve efficiency
but may introduce some bias.

6 Panel Data & Fixed Effects

6.1 Overview

Panel data analysis represents a powerful approach to causal inference that leverages repeated
observations of the same units over time. This longitudinal structure enables researchers to control
for time-invariant unobserved heterogeneity that might otherwise confound the relationship
between variables of interest. Panel data is characterized by observations indexed by both unit
(7) and time (t) dimensions:
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e Y, X;: Outcome and explanatory variables for unit ¢ at time t.
o N: Number of cross-sectional units (individuals, firms, countries, etc.).

e T Number of time periods.
The resulting dataset can be organized in different formats:

e Long format: Each row represents a unique unit-time combination, resulting in N x T
rOws.

e Wide format: Each row represents a unique unit, with separate columns for each time
period’s observations, resulting in N rows.

In microeconometric applications, the asymptotic properties of estimators typically rely on
N approaching infinity while 7" remains fixed or grows at a slower rate. This differs from time
series econometrics, where asymptotics are driven by T approaching infinity.

6.2 Variation in Panel Data

A fundamental advantage of panel data is its ability to capture different sources of variation:

Within variation (or "time variation") reflects changes in a variable over time for the same
unit. For a variable Xj;, the within variation is measured around each unit’s mean X;, capturing
temporal dynamics while holding unit identity constant.

Between variation (or "cross-sectional variation") reflects differences across units, typically
measured using unit means X;. This captures stable differences between units while abstracting
from temporal fluctuations.

Fixed effects estimation, the focus of this section, primarily exploits within variation to
identify causal effects, effectively controlling for all time-invariant differences between units.

6.3 Fixed Effects Estimation

The core insight of fixed effects estimation is that time-invariant unobserved heterogeneity can
be eliminated through within-unit comparisons. Consider a model where the outcome depends
on observed variables X;; and unobserved time-invariant characteristics Cj:

Yie = X8+ C; + uie (1)

If C; is correlated with X, pooled OLS estimates of 8 will be biased due to omitted variable
bias. Fixed effects estimation addresses this by exploiting the time dimension of the data.
In the simplest case with T = 2, we can difference the equation across time periods:

(Yo — Yi1) = (Xi2 — Xi1)B + (Cs — Ci) + (ui2 — u41) (2)

Since Cj is time-invariant, it cancels out in the differencing, allowing consistent estimation
of 8 even when C; is correlated with X;;. More generally, the fixed effects estimator can be
implemented by demeaning each variable within units:

(Yir — Vi) = (Xie — Xi)B + (uir — @) (3)

This "within transformation" removes all time-invariant factors, both observed and unobserved,
allowing identification of § solely from within-unit variation. The transformation is equivalent
to including a separate dummy variable for each unit in the regression:

Yie = X8+ di + ui (4)

where d; represents a set of unit-specific dummy variables. This approach directly controls
for all time-invariant characteristics of units without requiring explicit specification of these
factors.
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6.4 First-Difference Estimation

An alternative to the within transformation is first-differencing, which also eliminates time-
invariant factors:

(Yo = Y1) = (Xit — Xip—1)B + (Cs — Cs) + (wir — uip—1) (5)

Both fixed effects and first-difference estimators are consistent when N — oo with fixed T,
but they differ in their efficiency properties:

- If uy is serially uncorrelated, the fixed effects estimator is more efficient. - If u;; follows a
random walk (perfect serial correlation), the first-difference estimator is more efficient. - For
intermediate cases of serial correlation, their relative efficiency depends on the specific correlation
structure.

The choice between these approaches may also be influenced by other considerations, such
as the pattern of missing data or the presence of predetermined (rather than strictly exogenous)
Tegressors.

6.5 Alternative Panel Data Estimators

Several alternative estimators exist for panel data, each making different assumptions about the
relationship between unobserved heterogeneity and the regressors:
Pooled OLS treats the panel as a large cross-section, ignoring the panel structure:

Yie = X+ Ci + uy (6)

Consistency requires:
E[Xuuy] =0, E[X;3Ci] =0 (7)

The second condition is the key distinction from fixed effects—pooled OLS assumes no
correlation between the regressors and the unobserved heterogeneity. Even when consistent,
pooled OLS requires clustered standard errors to account for within-unit correlation in the
composite error term C; + .

Between Estimation uses only cross-sectional variation, averaging the data over time for each
unit:

Y, = Xif+Ci+ (8)

Consistency requires:

E[X;u;] =0, E[X;Ci]=0 9)

The between estimator is efficient if these conditions hold but inconsistent if unobserved
heterogeneity correlates with the regressors. It cannot identify the effects of time-invariant
variables, as these are absorbed into the unit effects.

Random Effects (RE) treats C; as a random variable uncorrelated with X;; but accounts for
the resulting error structure. The model can be written as:

Yie = X8 +vie, vie = Ci + uy (10)
The composite error term v;; has a specific variance-covariance structure:
Q :USIT—FO’?LJ‘T]‘% (11)

where Ir is the identity matrix and jp is a vector of ones. This structure captures the
fact that observations from the same unit share the common component C; and are therefore
correlated.

RE estimation uses generalized least squares (GLS) to account for this correlation structure,
resulting in a weighted average of the within and between estimators. When the assumption
E[X;;C;] = 0 holds, RE is more efficient than FE; when this assumption fails, RE is inconsistent.
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6.6 Hausman Specification Test

The Hausman test provides a formal method for choosing between fixed effects and random
effects estimators. The test compares the coefficients from both estimators under the null
hypothesis that the RE assumptions are valid:

o Hy: E[X;C;] =0, implying both FE and RE are consistent but RE is more efficient.
o Hy: E[X;C;] # 0, implying only FE is consistent.

The test statistic follows a chi-squared distribution under the null hypothesis:
H = (Bpg — Bre)' [Var(Brg) — Var(Bre) ™ (Bre — Bre) (12)

Rejecting the null hypothesis suggests that the correlation between regressors and unobserved
heterogeneity is significant, favoring the fixed effects estimator. However, it’s worth noting
that fixed effects estimation is always consistent (though potentially inefficient) under both
hypotheses, making it a conservative choice when in doubt.

6.7 Standard Errors in Panel Data Models

Proper inference in panel data models requires accounting for potential correlation structures in
the error terms:

Fixed Effects: Standard errors should be robust to heteroskedasticity and, if 7' is moderately
large, to serial correlation. This can be implemented using cluster-robust standard errors,
clustering at the unit level.

Pooled OLS: Clustering at the unit level is essential to account for within-unit correlation
induced by the unobserved heterogeneity component.

Between Estimation: Robust standard errors should be used to address potential heteroskedas-
ticity across units.

Random Effects: Both heteroskedasticity and within-unit correlation should be addressed,
typically through a combination of robust and clustered standard errors.

In all cases, the appropriate standard error specification depends on the assumed error
structure and the dimensions of the panel. When N is large relative to 7' (as in most microe-
conometric applications), clustering at the unit level addresses the most important sources of
correlation.

7 Difference-in-Differences

7.1 Panel Data and Causal Inference

Panel data enables researchers to address evaluation problems through difference-in-differences
(DiD or DD) estimation. This approach does not necessarily require true longitudinal data
on individuals; repeated cross-sections suffice. The DiD approach is particularly useful when
studying a policy, intervention, program, or event beginning at a specific time t* that affects
treatment status. With data collected both before and after ¢* for both treatment-affected and
unaffected units, difference-in-differences provides a strategy for evaluating policy impacts. The
resulting DiD estimate quantifies the direct impact of the policy on the outcome variable of
interest, while also providing information about the treatment effect, though not necessarily at
the precise scale of a one-unit increase in the treatment variable.
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7.2 Potential Outcomes Framework for Difference-in-Differences

The difference-in-differences approach can be understood through the potential outcomes frame-
work. Consider a setting where no units initially experience a policy intervention, after which a
treatment group becomes exposed beginning at time t*. For every group j and time period ¢,
we can define potential outcomes Y;;(0) and Yj (1) representing outcomes without and with
the policy, respectively. This notation extends the standard potential outcomes framework to
explicitly represent group- and time-specific potential outcomes. Within this framework, we can
define an average treatment effect for each group-time combination: ATE;; = E[Y;(1)—Y;.(0)].

In the standard DiD setup, we have two groups j € {Treatment (T), Comparison (C)} and
two time periods ¢t € {Before, After}. For example, Y7 4fier(0) represents the outcome for
the treatment group in the post-intervention period had they not been treated. The average
treatment effect on the treated in the post-period is ATT7 Atter = E[Y1 After(1) — Y7, 4 1ter (0)].
Since we cannot directly observe Yr 4 fteT(O), estimating this treatment effect requires additional
assumptions and estimation strategies.

7.3 Simple Difference Estimators and Their Limitations

A simple pre/post difference estimator compares outcomes of the treatment group before and
after the policy change:

Bar = Elyirlj = Tt > ¢"] — Elyulj = T, t < t7] (13)
= E[yAfter - yBefore’j = T] (14)
Examining the expected value of this estimator reveals that it combines the true causal effect
with a potential bias term:
E(Ba1) = Elyilj =T,t = After] — Ely;|j = T,t = Before]
= E[YT,After(l)] - E[YT,Before(O)]

= E[YT,After(l) - YT,AfteT(O)] + E[YT,After(O) - YT,Before(O)]
= True causal effect + Bias

This estimator can be implemented using OLS regression with data from the treatment
group before and after intervention:

Yit = o+ BnAftery +eit (19)

where A fter; indicates observations in the post-intervention period. The key identifying assump-
tion is that, absent treatment, outcomes would remain unchanged over time (84; = 0). This
assumption rarely holds in practice since outcomes typically change over time for numerous
reasons unrelated to the policy under study.

An alternative approach uses a simple treatment/control difference estimator that compares
outcomes between treatment and comparison groups after the policy change:

Bio = Blyalj = Tt > '] = Blyulj = C,t > t'] (20)
= Elyr —yclt > t] (21)

The expected value of this estimator also combines the true causal effect with a bias term:

E(Ba2)

Elyilj =T,t = After] — Ely;|j = C,t = After]

E[Yr after(1)] — E[Yc After(0)]

E[YT Afte?"( ) YT After(o)] + E[YT,After(O) - YC',After (O)}
True causal effect 4+ Bias
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This estimator can be implemented using OLS with post-intervention data from both groups:
Yij = a + BaeTreatment; + €45 (26)

where Treatment; indicates membership in the treatment group. The key identifying assumption
is that, absent treatment, outcomes would be identical between groups (842 = 0). This assumption
is problematic because treatment and comparison groups often differ systematically in ways that
correlate with outcomes.

7.4 The Difference-in-Differences Estimator

The difference-in-differences estimator addresses limitations of both simple difference approaches
by comparing changes in outcomes over time between treatment and comparison groups:

Bprp = (change in outcome over time for Treatment group)

— (change in outcome over time for Comparison group) (27)

Bpip = Elyi|j = T,t = After] — Ely;|j = T,t = Before]

Treated group change

— Ely;|j = C,t = After]| — Ely;|j = C,t = Before] (28)
Control group change
(29)
Taking the expectation reveals:
E(BDID) = (E[YT,AfteT(l)] - E[YT,Before (O)])
- (E[YC,After(O)] - E[YC,BEfOTE(O)]) (30)
= E[Y7 after(1) — YT After (0)]
ATT

+ (E[YT,After(O) - YT,Before(O)] - E[YC,After(O) - YC,Before(O)]) (31)

The crucial parallel trends assumption states that in the absence of treatment, both groups
would experience identical changes in outcomes over time:

E[YT,After(O) - YT,Before(O)} = E[YC,After(O) - YC,Before(o)] (32)

Under this assumption, the bias term becomes zero, making the DiD estimator an unbiased
estimator of the average treatment effect on the treated:

E(Bpip) = EYT After(1) — Y7, After(0)] = True causal effect (33)

7.5 Implementation and Calculation

The difference-in-differences estimator requires calculating four group means: (1) treatment
group after intervention, (2) treatment group before intervention, (3) comparison group after
intervention, and (4) comparison group before intervention. The DiD estimate is then computed
as the difference between the over-time change for the treatment group and the over-time change
for the comparison group.

Alternatively, researchers can implement DiD estimation using regression analysis with all
observations in the sample:

Yijt = o+ Bprp(Aftery x Treatment;) + 0 After, + yT'reatment; + ;5 (34)
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In this specification, A fter; indicates post-intervention periods, Treatment; indicates mem-
bership in the treatment group, and the interaction term After; x Treatment; captures the
treatment effect. The coefficient Sprp represents the difference-in-differences estimate. The
regression approach offers advantages including straightforward computation of standard errors
and the ability to incorporate additional control variables.

For data in wide format (one observation per unit rather than unit-time observations),
researchers can implement DiD by estimating a model with the change in the outcome as the
dependent variable:

Ay;j = a+ BprpTreatment; + Acjjq (35)

where Ay;j = Yij.after — Yijpefore Tepresents the change in the outcome for each unit.

7.6 Variations on the Basic Framework

An important variation of the standard DiD approach accommodates scenarios where a policy is
initially present and then eliminated. In such cases, the DiD estimator can be formulated as:

yijt = o + [((Before; - Treatment;) 4+ yBefore; 4+ 0Treatment; + €;¢ (36)

Here, Before; indicates the pre-elimination period, and 8 measures the differential impact
of the policy on the treatment group before its elimination. Alternatively, one could estimate
the standard DiD equation and interpret the coefficient of After; - Treatment; as the effect of
eliminating the policy.

7.7 Cohort-Based Difference-in-Differences

When longitudinal data are unavailable but cohort variation exists, researchers can implement a
cohort-based DiD strategy. This approach redefines the temporal dimension in terms of cohorts
(c) rather than time periods, such as birth cohorts or school cohorts. The estimating equation
becomes:

Yije = o + f(Affected Cohort, - Treatment;) + yAffected Cohort. + dTreatment; + €;;.  (37)

Where Affected Cohort,. equals 1 for cohorts exposed to the policy change and 0 otherwise.
This strategy is particularly valuable as it can be implemented with a single cross-section of
data. However, its applicability is limited to outcomes involving age-specific investments or
experiences that would be differentially affected across cohorts.

7.8 Enhanced Control Specifications

7.8.1 Additional Covariates

While the DiD framework inherently controls for time-invariant group characteristics and group-
invariant time effects, researchers often incorporate additional covariates that vary across both
groups and time to strengthen identification. This enhanced specification can be written as:

Yijt = o+ B(After; - Treatment;) + yAfter; + 0 Treatment; + ww;ji + €5 (38)

Where w;;; represents an additional explanatory variable. Including such covariates may help
satisfy the parallel trends assumption conditional on these variables, increasing the credibility of
the causal interpretation of 3.
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7.8.2 Fully Controlling for Main Effects

When dealing with multiple groups and time periods, researchers can implement a more flexible
DiD specification that fully controls for group and time main effects through fixed effects:

Yijt = o + B(After; - Treatment;) + o, + v;j + €ij (39)

In this equation, d; represents time fixed effects and ~; represents group fixed effects. With
J groups, one can include up to J — 1 group dummies, allowing the mean outcome to differ
across groups in a more flexible manner than would be possible with a single treatment dummy.
Similarly, with 7' time periods, one can include up to T'— 1 time dummies, providing an
unrestricted way to account for temporal variations in outcomes that affect all groups similarly.

7.9 Heterogeneous Treatment Effects
7.9.1 Event Study Specifications

To examine treatment effect dynamics and assess the validity of the parallel trends assumption,
researchers frequently employ event study DiD specifications. These specifications allow the
treatment effect to vary by time:

Yijt = o+ Y _ Bi[I(t = k) - Treatment;] + & + 7, + €ije (40)
k

In this formulation, k indexes time periods, with one period (typically either the earliest
period or the period immediately preceding the intervention) designated as the reference period
and omitted from the summation. The coefficients 5, capture the year-specific DiD effects
relative to this reference period. Each (j represents [Qtreatment, time ¢ — Ytreatment, reference time) —
[gcomp, time t — gcomp, reference time]‘

The event study approach serves multiple purposes. First, it allows researchers to visualize
treatment effect dynamics, potentially revealing how effects evolve over time. Second, it provides
a test of the parallel trends assumption: coeflicients for pre-intervention periods should not
significantly differ from zero if the assumption holds. Third, it may reveal anticipatory effects or
implementation lags that a standard DiD specification would miss.

7.9.2 Heterogeneity by Observable Characteristics

Researchers may also be interested in exploring how treatment effects vary across observable
characteristics. This can be accomplished by introducing triple interactions:

Yijt = o + B(After, - Treatment;) + ¢(X;j; - After; - Treatment;) + yAfter;
+ 6Treatment; + 6.X;; + p(Xij ¢ - Aftery) + A(Xij¢ - Treatment;) + €5 (41)

Where X;;; represents an observable characteristic of interest (e.g., race, gender, or educational
attainment). In this specification, 5 captures the treatment effect for observations with X;j;; = 0,
while ¢ measures the differential treatment effect for each unit increase in X;j;;. For binary
characteristics, ¢ represents the difference in treatment effects between the two groups defined

This approach facilitates formal hypothesis testing regarding effect heterogeneity through
t-tests on the coefficient ¢. Notably, when all coefficients are allowed to vary by Xj;;, this
specification is equivalent to estimating separate DiD models for each value of X j;.
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7.10 The Parallel Trends Assumption and Violations

The key identifying assumption in difference-in-differences estimation, known as the parallel
trends assumption, states that in the absence of treatment, the average change in outcomes
would be identical between treatment and comparison groups. This does not require that the
levels of outcomes be identical across groups, merely that the trends over time would be parallel
without intervention.

Violations of the parallel trends assumption can lead to biased DiD estimates. One form of
violation occurs when treatment group outcomes would naturally grow faster than comparison
group outcomes absent intervention, perhaps due to mean reversion or catch-up effects. In
this scenario, the DiD estimator would attribute this differential trend to the treatment effect,
resulting in an upwardly biased estimate.

Conversely, if treatment group outcomes would naturally grow more slowly than comparison
group outcomes absent intervention, possibly due to increasing inequality between groups, the
DiD estimator would produce a downwardly biased estimate of the treatment effect.

7.11 Multiple Policy Changes
7.11.1 Policies with Identical Timing

When multiple policy changes occur simultaneously across different treatment units, researchers
can either analyze each policy change separately or pool the data to estimate an average treatment
effect. For the latter approach, one can define a treatment group encompassing all units exposed
to any of the policy changes and implement the standard DiD specification.

7.11.2 Two-Way Fixed Effects Models for Staggered Adoption

For settings with staggered policy adoption, where treatment units adopt policies at different
times, the two-way fixed effects (TWFE) specification offers a convenient estimation framework:

Yijt = o + BHasPolicy j, + 0t + v; + €t (42)

Where HasPolicy;; equals 1 when unit j has implemented the policy by time ¢, and 0
otherwise. This specification efficiently leverages all available variation in treatment timing, with
units that have not yet adopted the policy serving as comparisons for early adopters.

However, it is important to recognize that this TWFE specification imposes homogeneous
treatment effect assumptions. The coefficient 5 represents a weighted average of all possible two-
group/two-period DiD estimators, with weights that can be negative under certain conditions.
Recent econometric literature has highlighted potential biases in TWFE estimators when
treatment effects vary over time or across groups, leading to the development of alternative
estimators that accommodate such heterogeneity.

When employing a TWFE specification, the key identifying assumption remains the parallel
trends assumption: in the absence of treatment, treated and untreated units would have
experienced parallel trends in outcomes. This assumption becomes more complex in staggered
adoption settings, as it must hold across multiple treatment and control groups defined by
adoption timing.

7.12 Staggered Treatment Adoption
7.12.1 Dynamic Treatment Effects and Event Studies

When policy effects potentially evolve over time, researchers often employ event study specifica-
tions that allow for dynamic treatment effects relative to policy adoption. Rather than focusing
on calendar time, these models center on event time—periods relative to treatment initiation.
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Let ¢} denote the adoption time for group j, then [ = ¢ —t7 represents time relative to adoption,
with [ = 0 indicating the implementation period, [ = —1 one period before implementation, and
so forth.

The dynamic TWFE specification typically takes the form:

L
yije =a+ Y Bt =t =1)+ 6+ + e (43)
I=—K £ -1

where I(t — ;= l) indicates that unit j at time ¢ is | periods away from its treatment. By
convention, the period immediately preceding treatment (I = —1) serves as the reference category.
The coefficients ; capture the treatment effect [ periods relative to implementation, allowing
researchers to trace the temporal evolution of policy impacts and assess pre-treatment parallel
trends.

7.13 Recent Methodological Advances
7.13.1 Challenges with Conventional TWFE Estimators

Recent econometric literature has demonstrated important limitations of conventional TWFE
estimators in settings with staggered treatment adoption and heterogeneous treatment effects.
Even under valid parallel trends assumptions, standard TWFE estimators may yield biased
estimates of average treatment effects because they implicitly use already-treated units as control
groups for later-treated units. When treatment effects vary over time—for instance, if effects
grow or diminish with exposure duration—these comparisons can introduce substantial bias,
potentially yielding estimates with incorrect magnitudes or even signs.

Furthermore, pre-treatment coefficients in event studies may be contaminated by treatment
effect dynamics, complicating their interpretation as tests of parallel trends. These issues
stem from the "forbidden comparisons" problem, where previously treated units with evolving
treatment effects serve as inappropriate counterfactuals for newly treated units.

7.13.2 Heterogeneity-Robust Estimators

To address these methodological challenges, econometricians have developed several heterogeneity-
robust DiD estimators. These approaches avoid problematic comparisons by carefully selecting
valid control groups and employing appropriate weighting schemes. The central principle involves
using only never-treated or not-yet-treated units as comparison groups when estimating treatment
effects for a given cohort at a specific time.

Within the potential outcomes framework, we can define the average treatment effect for
adoption cohort g at time ¢ as:

ATT(g,t) = E[Yi1 — Yig-1|Gi = g] — E[Yis — Yig—1|Gi = ¢'], for any ¢’ > ¢ (44)

where G; denotes the cohort to which unit i belongs. This formulation compares outcome
changes for units treated at time g to those for units not yet treated at time t. The approach
extends to using any pool of not-yet-treated units as comparisons:

ATT(97 t) = E[Y;,t - Y:L',g—llGi - g] - E[Yvi,t - Y;,g—1|Gi S gcomp} (45)

where Geomyp represents a set of comparison cohorts all satisfying ¢’ > t.

Empirical implementation involves estimating cohort-time-specific effects and then aggregat-
ing these estimates into policy-relevant parameters, such as event-study coefficients measuring
average effects [ periods after adoption:

ATT = Y w ATT(g,g +1) (46)
g
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The weights w, could balance cohorts equally or reflect their relative population frequencies.

Several heterogeneity-robust estimators have been developed in recent years, including the
Callaway and Sant’Anna (2021) estimator, the Sun and Abraham (2021) interaction-weighted
estimator, the de Chaisemartin and D’Haultfoeuille (2020) difference-in-differences with multiple
groups at multiple times approach, and the imputation-based estimator of Borusyak, Jaravel,
and Spiess. Each implements the principle of avoiding forbidden comparisons while differing in
their precise implementation details and efficiency properties.

7.14 Treatment Intensity Variation
7.14.1 Continuous Treatment Variables

The DiD framework extends naturally to continuous treatment variables, allowing researchers to
leverage variation in treatment intensity rather than binary treatment status. With continuous
treatments, the estimated coefficient captures the marginal effect of increased treatment "dosage'
rather than the average effect of a binary intervention.

Treatment intensity may vary along multiple dimensions. On the extensive margin, units
differ in whether they receive any treatment. On the intensive margin, treated units experience
different treatment magnitudes. For example, some regions may experience larger policy shocks
than others due to pre-existing conditions or implementation differences. Similarly, treatment
exposure may vary temporally, with some units experiencing longer duration of treatment than
others.

To incorporate treatment intensity, researchers typically construct a policy exposure measure
that equals zero for untreated units and increases with treatment dosage for treated units:

Yyijt = a + PPolicyExposure;, + ¢ + v, + €4t (47)

This approach offers distinct advantages. First, it does not require a completely untreated
comparison group, as identification leverages comparisons between units with different exposure
levels. Second, it enables estimation of dose-response relationships, potentially revealing nonlinear
effects or threshold phenomena. However, this specification identifies the marginal effect of
increased exposure rather than the overall policy effect; if all units receive some treatment, the
baseline effect remains unidentified.

The identifying assumption shifts accordingly: without treatment, outcomes for higher-
intensity groups would have evolved in parallel with those for lower-intensity groups. This
continuous difference-in-differences approach requires careful consideration of what generates
variation in treatment intensity and whether this variation is plausibly exogenous conditional on
controls.

Treatment intensity can be operationalized in various ways depending on the context.
Common measures include the magnitude of policy changes (e.g., tax rate differentials), pre-
treatment characteristics that moderate exposure (e.g., baseline infection rates before a health
intervention), or treatment duration (e.g., years of exposure to an educational reform). In some
applications, researchers combine multiple dimensions of intensity, such as both cross-sectional
variation in potential treatment magnitude and temporal variation in exposure duration.

7.15 Assessing the Validity of the Parallel Trends Assumption

When working with a minimal data structure consisting of two groups measured at only two
time points, researchers face significant limitations in evaluating the validity of the parallel
trends assumption. The most viable approach in such cases involves thoroughly investigating
the contextual factors surrounding the policy implementation. This includes articulating a
compelling case that policy adoption can be considered conditionally random after accounting
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for time-invariant group characteristics (controlled for through group fixed effects) and relevant
covariates at both the time-specific and group-time-specific levels.

Particular attention should be paid to potential confounding factors at the group-time level,
such as contemporaneous policy changes that might also influence the outcome of interest. While
policies affecting both treatment and comparison groups uniformly do not typically threaten
identification, policies with differential effects across groups can compromise the ability to isolate
the impact of the focal intervention. In such cases, controlling for these additional policies
becomes essential to support the causal interpretation of the DiD estimates.

The assessment of parallel trends becomes substantially more feasible when richer data
are available. With observations spanning multiple pre-intervention time periods or cohorts,
researchers can implement empirical tests of pre-treatment trend similarities. Similarly, data
encompassing multiple groups enables additional validation strategies that leverage variation
across unaffected populations.

7.16 Methodological Approaches with Extended Pre-Treatment Data

When researchers have access to data covering multiple pre-intervention periods, they can
implement various methods to assess the credibility of the parallel trends assumption. The
fundamental approach involves conducting "placebo" or "control" experiments that utilize only pre-
treatment observations. A straightforward visual inspection entails graphing the mean outcomes
for treatment and comparison groups across pre-intervention periods. If these trends appear
parallel prior to the intervention, this provides intuitive evidence supporting the identifying
assumption.

Some researchers enhance this graphical analysis by first regressing the outcome variable on
relevant covariates and then plotting the residuals, arguing that conditional parallel trends may
exist even when unconditional trends diverge. Beyond visual inspection, more formal statistical
tests can be implemented to evaluate pre-treatment trend similarities.

7.17 Leveraging Unaffected Groups for Validation

Another powerful validation strategy involves utilizing additional groups that remain unaffected
by the policy throughout the study period. For instance, if examining the impact of maternity
benefit mandates on wages of women of childbearing age, researchers might consider women
beyond childbearing age or single men as placebo groups. These groups presumably experience
the same broader economic trends as women of childbearing age but remain unaffected by the
maternity policy.

By estimating the standard DiD model on these unaffected populations:

Yijt = o+ B x After; x Treatment; + v x After; + 6 x Treatment; + € (48)

researchers can assess whether differential trends exist between treatment and comparison
regions even in populations unaffected by the policy. A coefficient 3 statistically indistinguishable
from zero would support the parallel trends assumption, as it indicates that group-specific time
trends unrelated to the policy were similar across treatment and comparison regions.

7.18 Addressing Violations of the Parallel Trends Assumption

If pre-intervention data reveal differential trends between treatment and comparison groups,
several methodological approaches can be employed to address this violation of the standard
DiD identifying assumption. First, researchers might include additional time-varying covariates
to condition on factors driving the differential trends. While time-invariant group characteristics
are already controlled through group fixed effects, and aggregate time effects through time
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fixed effects, variables that vary at the group-time level may absorb the differential trends if
appropriately specified.

Second, the DiD estimates can be adjusted to account for pre-existing differential trends.
One approach involves implementing a triple differences (DDD) estimator, which incorporates an
additional dimension of comparison to difference out the differential trends. Alternatively, and
more commonly, researchers may augment the standard DiD specification with group-specific
time trends:

S
Yist = a + B X After; x Treatmentg + ¢ + 05 + Z Opl(s =k) Xt + €st (49)
k=1
where 6 captures the linear time trend specific to state k. This approach allows each group
to follow its own trend over time, with the treatment effect measured as deviations from these
group-specific trajectories. In data-limited settings, more aggregated group-specific trends (e.g.,
at the regional rather than state level) may be implemented as a compromise solution.

7.19 The Triple Differences (DDD) Methodology

The triple differences or difference-in-difference-in-differences (DDD) estimator provides a struc-
tured approach to addressing differential trends in DiD designs. This method introduces a third
dimension of comparison—typically a demographic group unaffected by the policy but subject
to similar background conditions as the affected group.

In a standard implementation with two groups (treatment and comparison), two time
periods (before and after), and two demographic categories (affected and unaffected), the DDD
approach involves estimating separate DiD models for each demographic group. For the affected
demographic group, the standard DiD equation is:

Yijt = QAFFECTED BAFFECTED x After; x Treatment;

+ ,YAFFECTED % Aftert + 5AFFEC’TED AFFECTED (50)

x Treatment; + €;5;

For the unaffected demographic group, a parallel placebo DiD equation is:

Yijt = aUNAFFECTED + BUNAFFECTED % Aftert % Treatmentj

+,YUNAFFEC’TED % Aftert +5UNAFFECTED UNAFFECTED (51)

x Treatment; + €5

The DDD estimate is then calculated as fAFFECTED _ gUNAFFECTED offectively differ-
encing out any differential trends between treatment and comparison regions that are common
across demographic groups. This estimate can be obtained directly through a single regression
specification:

Yijt = @+ Bada X AffectedGroup,;, X After; x Treatment;
+ 0t + 5 + m x AffectedGroup,;, + m2 x AffectedGroup,;; x After; (52)
+ 3 X Aﬁ’ectedGroupZ-jt x Treatment; + m4 x After; x Treatment; + €
The triple interaction coefficient £444 represents the policy effect purged of differential trends,
provided that all relevant main effects and two-way interactions are included as controls. This

approach assumes that any differential trends between treatment and comparison regions would
have been similar across affected and unaffected demographic groups in the absence of the policy.
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7.20 Statistical Inference in DiD Applications

While DiD research often emphasizes consistent estimation of policy effects, appropriate inference
requires attention to standard error estimation. In DiD papers, clustered standard errors have
become standard practice, with clustering at the level of cross-sectional variation in the policy
measure. For instance, with state-time level policy variables, standard errors should be clustered
at the state level. This approach accounts for both heteroskedasticity and correlation between
error terms within clusters. Conventional standard errors would inappropriately ignore both
heteroskedasticity and serial correlation, while heteroskedasticity-robust standard errors would
address only the former.

The asymptotic justification for clustered standard errors relies on the number of clusters
approaching infinity. Consequently, small numbers of clusters create inferential challenges,
typically resulting in over-rejection of null hypotheses. The mathematical framework for clustered
variance estimation illustrates this limitation:

Var(b) = (X'X)7 0, X/, X (X'X)™

where \f/g represents the estimated cluster-specific variance-covariance matrix of residuals, G
is the number of clusters, and M, denotes observations within cluster g.

Several methodological approaches address inference with few clusters. Cameron and Miller
(2015) summarize solutions including finite sample bias correction, t-distribution critical values,
and cluster bootstrap methods with asymptotic refinement. Abadie et al. (2023) provide
guidance on when standard error clustering is appropriate. Roth et al. (2023) synthesize recent
literature on inference with few clusters and appropriate clustering levels. With particularly
small numbers of clusters, wild cluster bootstrap procedures have become increasingly common,
as developed by Cameron, Gelbach, and Miller (2008). Even with apparently large numbers of
clusters, few treated clusters can produce similar inferential problems, addressed by approaches
such as MacKinnon and Webb’s (2020) randomization inference for DiD with few treated clusters.

7.21 Bootstrap Methods for Inference in DiD Settings

Bootstrap methods estimate the distribution of an estimator or test statistic through data resam-
pling, as articulated by Horowitz (1999). These approaches employ the empirical distribution
function (EDF) of an estimator based on observed data to approximate its true distribution
through resampling procedures. The resulting EDF can be used to calculate the estimator’s
variance, yielding standard errors for inference. Alternatively, recognizing that empirical distribu-
tions may be asymmetric or otherwise non-normal, researchers may employ percentile methods
to derive critical values for hypothesis testing. This approach orders the bootstrap estimates
and identifies appropriate percentiles (e.g., 2.5th and 97.5th percentiles for a two-tailed test at
5% significance).

For independent observations, paired bootstrap involves resampling both dependent and
independent variables. With N independent observations of data (y,x), the procedure entails
drawing B bootstrap samples of size N by sampling with replacement from the original sample.
For each bootstrap sample (y*, z*), the statistic of interest is calculated, ultimately yielding B
estimates of this statistic. Inference then proceeds based on the empirical distribution of these
estimates.

When data exhibit clustering, as in many DiD applications, modified bootstrap approaches
become necessary. Paired bootstrap with clustered data resamples at the cluster level rather than
the individual observation level. With N observations distributed across G clusters, resampling
occurs by drawing G clusters with replacement from the original sample. While each bootstrap
sample contains the same number of clusters, the number of observations may vary if clusters
differ in size. The statistic is calculated for each bootstrap sample, and inference follows from
the resulting empirical distribution.

For DiD applications with few clusters, wild cluster bootstrap provides an alternative

26



approach. Rather than resampling both dependent and independent variables, this method fixes
the independent variables and resamples only the dependent variable. The procedure begins
by estimating the model under the null hypothesis, generating parameter estimates @ 1, and
residuals é;y = y; — xlﬁ 1, For each of B iterations, weights w, are randomly assigned to each
cluster (with all observations within a cluster receiving identical weights), typically following
a Rademacher distribution (wy = —1 or 1, each with probability 0.5). These weights generate
pseudo-residuals ej, = wy - &4 and resampled dependent variables y, = 2B, + €;g- The
statistic is calculated for each bootstrap sample, and inference proceeds based on the empirical
distribution. For extremely small numbers of clusters, Webb’s six-point distribution provides

an alternative to the Rademacher distribution, employing weights {—\/g ,—1, —%, %, 1, \/g }
each with probability %.

8 Synthetic Control Method

8.1 Introduction and Motivation

The Synthetic Control Method addresses a fundamental challenge in causal inference: identifying
the impact of policy interventions or events that affect aggregate entities such as countries,
regions, or firms. Traditional difference-in-differences approaches often rely on subjectively
selected comparison groups based on researcher intuition about similarities between treated
and control units, such as geographic proximity or cultural affinity. In contrast, the Synthetic
Control Method, introduced by Abadie and Gardeazabal (2003) in their American Economic
Review paper on the economic costs of conflict in the Basque Country, employs a data-driven
approach to construct comparison groups. This method creates a "synthetic control" for the
treatment unit as a weighted average of untreated units, with weights selected to maximize
pre-intervention similarity between the treated unit and its synthetic counterpart. This approach
enhances the credibility of counterfactual scenarios and reduces researcher discretion in the
selection of comparison units.

8.2 Methodological Framework

The formal framework of the Synthetic Control Method, as detailed in Abadie’s 2021 Journal
of Economic Literature article, begins with a setting of J + 1 units where only unit 1 receives
an intervention after time period Ty, while the remaining J units serve as potential controls.
For any unit j at time ¢, we denote the outcome as Yj;. The causal effect of the intervention on
unit 1 at time ¢ > Tp is defined as 71; = Y7} — Y{}¥, where Y} represents the observed outcome
with intervention and Y7} represents the counterfactual outcome without intervention. Since
YIJX is unobservable, the synthetic control approach constructs an estimate using a weighted
average of outcomes from the untreated units. This provides an estimate of the treatment effect:

. J+1
Tt = Y1 — j=2 w; gt-

8.3 Weight Determination Process

The determination of optimal weights in the Synthetic Control Method requires rich pre-
intervention data and proceeds through a two-stage optimization process. Let X; = (Z1,Y7) rep-
resent the vector of predictor variables for the treated unit, and Xy = (Z;,Y}) for the non-treated
units. The predictor variables typically include outcome lags and other relevant covariates. The
first stage selects weights w* to minimize the distance between characteristics of the treated unit

1/2
and the synthetic control: || X; — XoW/|| = (Zﬁ:l vp(Xp1 — woXp2 — - — wJ+1Xh7J+1)2) ,
where weights w; are restricted to be non-negative and sum to one. The parameters v}, represent
the relative importance of each predictor variable.
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In the second stage, the method selects the vector V' of variable weights that minimizes
the mean squared prediction error (MSPE) in the pre-intervention period. For each potential
V', we compute the corresponding optimal W (V') through the minimization described above.
The final selection among these combinations aims to minimize the pre-intervention prediction
error: Y yeq, (Yie —wo(V)Yop — -+ — w1 (V)Yyy1,)? for some set Ty € {1,2,..., Ty} of pre-
intervention periods. This two-stage process ensures that the synthetic control closely tracks
the trajectory of the treated unit before intervention, strengthening the plausibility of the
counterfactual.

8.4 Inference and Validation

Statistical inference in the Synthetic Control Method primarily relies on placebo tests rather
than traditional asymptotic inference, given the limited number of units typically involved. One
prominent approach involves iteratively applying the method to each control unit as if it had
received the treatment, generating a distribution of "placebo" treatment effects. The magnitude
of the actual treatment effect can then be evaluated relative to this placebo distribution.
Additionally, researchers may conduct "in-time" placebo tests by artificially backdating the
intervention to a pre-treatment period; significant effects in these tests would suggest pre-existing
differences rather than causal impacts.

8.5 Empirical Implementation

The Synthetic Control Method has been implemented in various statistical packages. In Stata,
the procedure is executed using the synth command. A typical implementation, as in the
replication of the California tobacco control program analysis, would involve commands such as:

use synth_smoking

tsset state year

synth cigsale beer lnincome retprice agelbto24 cigsale(1988)
cigsale(1980) cigsale(1975) , trunit(3) trperiod(1989)
xperiod(1980(1)1988) nested fig

In this specification, the intervention unit (California) is identified as unit 3, with 1989 as
the intervention year. The pre-intervention period spans 1980-1988, and the model incorporates
both contemporaneous predictors and lagged outcome variables.

8.6 Recent Methodological Advances

Recent methodological developments have extended the Synthetic Control framework to address
various practical challenges. A notable advancement is the Synthetic Difference-in-Differences
(SDID) approach proposed by Arkhangelsky et al. (2021) in the American Economic Review.
This method integrates elements of both difference-in-differences and synthetic control approaches.
While standard synthetic control methods focus on matching levels of outcomes, SDID aims to
construct a weighted combination of control units that satisfies the parallel trends assumption.
This innovation addresses situations where no convex combination of control units can adequately
match the treated unit’s level, while standard difference-in-differences methods cannot identify
suitable comparison groups for the parallel trends assumption.

The SDID estimator can be implemented in Stata using the sdid package, available through
the command ssc install sdid. Researchers interested in applying this method can find
further guidance and code repositories at resources such as the GitHub repository maintained
by Daniel Pailanir.
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8.7 Conclusion

The Synthetic Control Method represents a significant advancement in the causal analysis of
aggregate-level interventions. By offering a data-driven approach to counterfactual construction,
it reduces researcher discretion in comparison group selection while maintaining transparency in
weight determination. The method has found applications across various domains in economics
and political science, and continues to evolve through methodological refinements. Comprehensive
resources for researchers interested in this approach include Abadie’s 2021 JEL article, as well
as review pieces by Abadie and Cattaneo (2018) and Athey and Imbens (2017), which situate
the method within the broader landscape of program evaluation techniques.

9 IV Estimation

9.1 Instrumental Variables Estimation

The central question in instrumental variables (IV) estimation is determining the causal effect of
a variable z on an outcome y, formalized in the structural equation:

yi = a+ P + . (53)

A core concern is the potential endogeneity of x, which arises when z is correlated with the
error term u;, thereby rendering ordinary least squares (OLS) estimates biased and inconsistent.
Suppose a variable z exists that satisfies two critical conditions: it must be correlated with
the endogenous regressor = (relevance), and it must be uncorrelated with the error term w;
(exogeneity). Formally, these conditions are:

(IV.A1) Cov(z,z;) #0 (54)
(IV.A2) Cov(z;,u;) =0. (55)
If both conditions are satisfied, z serves as a valid instrument for x, and IV estimation provides

a consistent estimate of .
In the simple bivariate case, the OLS estimator is given by

Cov(z,y)
b = —". 56
OLS Var(z) (56)
Expanding the numerator yields
Cov(z,y) = BVar(z) + Cov(z,u), (57)
which implies that
Cov(z,u)
bors = f + AL U)
orLs =B+ Var(2) (58)

When Cov(z,u) # 0, OLS estimates are biased. In contrast, the IV estimator in the bivariate
case takes the form

~ Cov(z,y)

~ Cov(z,x)’ (59)

brv

Substituting in the structural equation, and under the assumption of valid instruments, this
simplifies to by, = B, ensuring consistency.
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9.2 The Wald Estimator

When the instrument z is binary, the IV estimator simplifies to the Wald estimator:

Elyilzi = 1] — Elyi|zi = 0]
E[a:z|zz = 1] — E[$1|Zl = 0].

bry = (60)
This expression provides an intuitive ratio of differences in means across treatment groups and
is particularly useful in evaluating randomized controlled trials and natural experiments.

9.3 Terminology in IV Estimation

The structural equation represents the economic relationship of interest, for instance:
yi = a+ Bz + Bazai + i, (61)

where x1 is endogenous and xo is exogenous. The first stage equation regresses the endogenous
regressor on all exogenous variables and instruments:

T1; = ﬂ_{irst + ﬂ_girstm% + ﬂ_:];irstzi + UZﬁTSt. (62)
Identification relies on exclusion restrictions, which assume that instruments z influence y only
through their effect on x1. The explanatory power of instruments should be reported, typically
via the F-statistic on the instruments’ coefficients in the first stage regression.
The reduced form equation relates the outcome y directly to all exogenous variables:

yi = mt g gy + wi i+ uf (63)
This equation, along with the first stage, can be estimated using OLS. Whether or not they are
of direct interest, their coefficients are integral to understanding IV estimation.
The system is said to be just identified if the number of instruments equals the number of
endogenous regressors, overidentified if there are more instruments than endogenous regressors
(enabling overidentification tests), and not identified if there are too few instruments.

9.4 Indirect Least Squares

In cases with one endogenous regressor and one instrument, the IV estimator can be obtained as
a ratio of reduced form to first stage coefficients:

Pl (64)

_first®
73

This approach is known as the indirect least squares (ILS) estimator. With multiple instruments,
alternative ILS estimators can be computed by substituting in different instruments, as in the
case of using z; and w; separately.

9.5 Two-Stage Least Squares Estimation

Among linear IV estimators, two-stage least squares (2SLS) is typically the most efficient. In
the first stage, the endogenous variable is regressed on all instruments and exogenous variables,
and fitted values are computed. In the second stage, the structural equation is estimated using
these fitted values in place of the endogenous regressor:

first ~ first

irst N
{ + " oy + T3 2.

1. First stage: xy;, =7
2. Second stage: y; = o + 1215 + Boxo; + ;-

Although the process appears two-step, software such as Stata typically implements 2SLS in a
single step to ensure correct standard errors and minimize user error.
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9.6 Sources of Valid Instruments

The credibility of IV estimation rests on finding valid instruments that satisfy both relevance
and exogeneity. Instruments must be strongly correlated with the endogenous regressor and
must not independently affect the outcome variable. Theoretical reasoning and structural
models can inform the selection of instruments by addressing the specific sources of endogeneity.
Systems of simultaneous equations often provide natural sources of instruments through exclusion
restrictions.

Randomized experiments and natural experiments are valuable sources of exogenous variation.
These include policy changes, institutional rules, or exogenous shocks like weather deviations.
However, even if an instrument provides variation in x, researchers must ensure it satisfies the
exclusion restriction. If z affects y through multiple channels, it cannot be considered valid.

9.7 Randomized Experiments and IV

Randomized controlled trials can be interpreted through an IV framework, especially when there
is non-compliance. Suppose z is a binary indicator for treatment assignment, and z denotes
actual treatment received. The reduced form regression:

yi = g (65)

provides the intention-to-treat (ITT) effect. If compliance is imperfect, IV methods can recover
the treatment effect for the treated. The Wald estimator:

Elyilzi = 1] — Elyi|zi = 0]
E[IL’Z|ZZ = 1] - E[a:z\zz = O]

(66)
reflects the local average treatment effect (LATE), which is the effect of treatment for compliers.

9.8 The Local Average Treatment Effect (LATE)

The IV estimator identifies the LATE, defined as the average treatment effect for individuals
who comply with the instrument (e.g., take treatment when assigned to treatment and not
otherwise):

LATE = E[yl — y0]D1 > Do]. (67)

Let z be the indicator for treatment assignment, D the actual treatment received, and y;
and yo denote potential outcomes with and without treatment. Individuals fall into one of
four categories: never-takers, always-takers, compliers, and defiers. Under the assumption of
monotonicity (no defiers), LATE is identified.

When treatment effects are heterogeneous or monotonicity is violated, IV no longer estimates
the average treatment effect (ATE) or the treatment effect on the treated (TT). However, LATE
remains policy-relevant and informative, particularly in the presence of imperfect compliance
and heterogeneous responses.

9.9 Where Do Valid Instruments Come From?

Policy changes can serve as a valuable source of exogenous variation in the explanatory variable
of interest, typically denoted as x. These changes, particularly when implemented at different
times or in different locations, offer a framework that resembles difference-in-differences (DiD)
designs. In such cases, the policy can be used to construct an interaction term (e.g., After x
Treatment), capturing the differential exposure to the policy. A first-stage regression might take
the form x = m + mo(After x Treatment) + m3After + w4 Treatment + u, where 7o represents the
impact of the policy on x. This variation can then be used in an instrumental variables (IV)
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strategy to estimate the causal effect of x on an outcome y. However, for the instrument to
be valid, one must ensure that the policy-induced variation in x is not correlated with other
determinants of y, necessitating appropriate control for main effects and potential differential
trends. Even if a policy shifts x, it may still fail to meet the exclusion restriction required for a
valid instrument. Therefore, careful background research on the policy is essential. If the policy
plausibly affects only = and not y directly or through other channels, then it may serve as a
valid instrument.

Another fruitful source of instruments is administrative or institutional rules that create sharp
thresholds or discontinuities in treatment assignment. These setups often align with regression
discontinuity (RD) designs. A typical case involves a running variable z; that determines
eligibility for a treatment x based on a cutoff. A dummy variable indicating whether the running
variable exceeds the cutoff can be used as an instrument for = to estimate its effect on y, provided
that the running variable is adequately controlled for in the analysis. This design helps isolate
local exogenous variation near the threshold.

This approach is well illustrated by Angrist and Krueger (1991), who used quarter of birth as
an instrument for educational attainment to estimate its effect on earnings. Another example is
Bleakley and Chin (2004), who examined the impact of English-language proficiency on earnings
by instrumenting language skills with a variable capturing whether an immigrant arrived in
the United States at a young age from a non-English-speaking country, controlling for both
components individually.

Hoekstra (2009) provides another RD-based example by examining the earnings effect of
attending a flagship state university. The instrument in this case is a dummy variable indicating
whether an applicant’s test score was above the admission cutoff. The credibility of the RD-IV
approach hinges on the assumption that no other factors jump discontinuously at the cutoff,
aside from the treatment of interest.

Angrist and Lavy (1999) offer an additional illustration, using Maimonides’ rule for deter-
mining class size as an instrument to estimate the effect of class size on student achievement. In
this context, the rule creates predictable variation in class size based on enrollment numbers,
generating exogenous variation suitable for IV estimation.

Across all these examples, the core principle remains consistent: for an instrument to be
valid, it must satisfy relevance (correlation with x) and exogeneity (no correlation with the error
term in the outcome equation). The choice of instrument must be guided by theory, institutional
knowledge, and empirical validation.

Valid instruments are central to credible instrumental variable (IV) estimation. These
instruments must satisfy two core requirements: they must be correlated with the endogenous
regressor of interest (relevance) and uncorrelated with the structural error term (exogeneity). A
variety of empirical strategies have emerged to identify valid instruments, including those based
on geography, weather, historical factors, and shift-share designs.

Geographic instruments leverage spatial variation in features that are plausibly exogenous.
While geographic variation can offer powerful identification, caution is warranted, as many
geographic factors may directly influence the outcome variable. Instruments based on geography
are more credible when justified by clear, exogenous mechanisms such as historical engineering
decisions or nonlinearities tied to natural constraints or policy changes.

Weather-based instruments rely on the stochastic nature of weather variation. Crucially, it
is often the deviations from usual weather patterns, rather than weather levels themselves, that
serve as valid instruments. This distinction is essential for ensuring that the instrument captures
exogenous variation rather than being correlated with latent factors affecting the outcome.

Historical instruments draw on the persistence of institutions and practices over time.
Institutional structures that originated for reasons unrelated to the present context may continue
to exert influence on current variables of interest, providing quasi-random variation. A prominent
example of this is the class of shift-share instruments. In such designs, the instrument is
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constructed as the product of historical shares (e.g., employment composition by sector in a base
year) and aggregate shocks (e.g., national sector growth), predicting local exposure to exogenous
shifts.

Several recent studies offer detailed guidance on implementing and evaluating shift-share
instruments. Notable references include Borusyak, Hull, and Jaravel (2025), who provide a
practical framework for applying shift-share methods, and earlier contributions such as Goldsmith-
Pinkham, Sorkin, and Swift (2019); Ad&o, Kolesar, and Morales (2019); and Borusyak et al.
(2022). Key identification challenges in shift-share settings include assessing whether the shifts
are truly exogenous and whether the historical shares can be treated as predetermined.

While IV estimation is mechanically straightforward, identifying a truly valid instrument
remains challenging. Researchers are encouraged to review existing literature for instruments
used in similar contexts, even if the outcome differs. Additionally, policy changes that affect
the endogenous variable are promising sources of exogenous variation. Reduced-form effects
stemming from such changes can inform the plausibility of an instrument and may, in some
cases, be leveraged directly for IV estimation.

9.10 Interpretation of IV Estimates

The IV estimator identifies the local average treatment effect (LATE), which represents the
causal effect of the treatment on compliers—individuals whose treatment status is influenced by
the instrument. This concept was formalized by Imbens and Angrist (1994) and is discussed
extensively in MHE Chapter 4.

It is important to distinguish LATE from the average treatment effect (ATE) and the average
treatment effect on the treated (ATT). In general, IV estimation does not recover ATE or
ATT unless additional assumptions hold. For instance, under constant treatment effects, LATE
coincides with both ATE and ATT. Similarly, if all untreated individuals are never-takers or if
treatment can only be obtained in one way, then LATE may approximate ATT.

Nonetheless, the external validity of IV estimates can be limited. Although LATE may
be informative, it applies only to a specific subpopulation. In some settings, however, this
subpopulation (i.e., the compliers) may be of particular policy interest.

Recent work by Blandhol, Bonney, Mogstad, and Torgovitsky (NBER Working Paper
No. 29709) explores the conditions under which the two-stage least squares (2SLS) estimate
corresponds to LATE, highlighting potential limitations of conventional interpretations.

9.11 Alternative IV Estimators: LIML

In overidentified settings, several IV estimators are available. While the 2SLS estimator is the
most common, it can suffer from finite sample bias. An alternative is the limited information
maximum likelihood (LIML) estimator, which is consistent and often has reduced finite-sample
bias relative to 2SLS. In Stata, the LIML estimator can be implemented via the ivregress
2sls, 1iml command. When the model is just-identified, all IV estimators—2SLS, LIML, and
others—coincide.

9.12 Pitfalls in Instrumental Variable Estimation

One of the most frequent issues in IV estimation is the use of weak or invalid instruments.
The validity of an instrument hinges on the satisfaction of two conditions: (1) the instrument
must be correlated with the endogenous regressor (relevance) and (2) the instrument must not
affect the outcome variable except through its effect on the endogenous regressor (exogeneity).
Angrist and Krueger (2001) emphasize that a good instrument is one whose relationship to the
endogenous regressor is both strong and theoretically justified, and whose exclusion from the
outcome equation is credible.
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Weak instruments lead to biased IV estimates and unreliable inference. The relevance of
instruments can be assessed via the first-stage regression. A common rule of thumb is that if
the F-statistic for the excluded instruments is below 10, the instruments are weak. Seminal
contributions on this issue include Staiger and Stock (1997) and Bound, Jaeger, and Baker
(1995).

To mitigate the issues arising from weak instruments, researchers are advised to report
first-stage results and consider inference methods robust to weak identification. For example, the
Anderson-Rubin test offers inference that remains valid even in the presence of weak instruments.
Keane and Neale (2023), Mikusheva (2013), and Andrews, Stock, and Sun (2019) offer detailed
treatments of inference under weak instruments.

A separate concern arises when the exclusion restriction is violated. If the instrument affects
the outcome through channels other than the endogenous regressor, it cannot be considered
valid. Overidentification tests, such as the NR? test, offer a way to evaluate the joint validity of
instruments when the model is overidentified (K > G). However, these tests have limitations:
they cannot confirm validity, and rejections may arise from treatment effect heterogeneity rather
than instrument invalidity.

Random assignment, while useful, does not automatically produce a valid instrument. An
instrument generated through experimental or quasi-experimental variation must still satisfy the
exclusion restriction. If the instrument has multiple causal pathways to the outcome, it cannot
serve as a valid instrument for isolating the effect of a single regressor.

The external validity of IV estimates remains an important issue. Since IV identifies the
effect for compliers, researchers must consider the representativeness of this group. Comparing
compliers to the general population, treated individuals, or policy-relevant subpopulations helps
assess the generalizability of the findings. If the study offers the only credible causal estimate
available, or if the compliers are substantively interesting, the results may still carry significant
value.

9.13 Elements of a Convincing IV Study

A compelling IV paper begins with a well-motivated research question, typically framed as
the causal effect of a treatment or variable x on an outcome y. The author should provide a
clear explanation of why OLS estimation may be biased, often due to endogeneity arising from
omitted variables, measurement error, or reverse causality.

The core of the argument rests on the validity of the instrument. This includes a conceptual
narrative linking the instrument to the endogenous regressor, empirical evidence of a strong first
stage, and a plausible justification for the exclusion restriction. Visualizations of first-stage and
reduced-form relationships can enhance credibility.

Empirical results are typically presented in a series of tables: first-stage regression estimates,
reduced-form regression estimates, and the final 2SLS estimates of the structural equation. When
appropriate, OLS estimates should be presented for comparison with the 2SLS results.

Finally, the interpretation of results should reflect on the likely characteristics of compliers,
the external validity of the estimates, and the potential policy implications. A discussion of
robustness checks and specification tests further strengthens the credibility of the findings.
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